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1. UNIT I

Groups

Definition 1.1 Group: A non-empty set of elements G is said to form
a group if in G there is defined a binary operation, called the product and
denoted by (·) such that

1. a, b ∈ G ⇒ a · b ∈ G (closure axiom),

2. a, b, c ∈ G ⇒ a · (b · c) = (a · b) · c (Associative axiom),

3. there exists an element e ∈ G such that a · e = e · a = a,∀a ∈ G
(Existence of identity),

4. ∀a ∈ G there exists an element a−1 ∈ G such that a · a−1 = a−1 · a = e
(Existence of inverse).

Definition 1.2 Abelian group: A group G is said to abelian (or commu-
tative) if ∀a, b ∈ G ⇒ a · b = b · a.

Remark 1.3 A group which is not abelian is called a non-abelian group.

Example 1.4 Let G = {0,±1,±2, ...}. Define a · b = a + b. Then G is an
abelian group. i.e., (Z,+) is an abilian group.

Example 1.5 Let G = {1,−1}. Then G is a group under multiplication.
Here G is an abelian group of order 2.

Example 1.6 Let S3 = {x1, x2, x3}, consider

e =

(

x1 x2 x3

x1 x2 x3

)

, φ =

(

x1 x2 x3

x2 x1 x3

)

, ψ =

(

x1 x2 x3

x2 x3 x1

)

and φ2 = e

φ·ψ =

(

x1 x2 x3

x3 x2 x1

)

, ψ·φ =

(

x1 x2 x3

x1 x3 x2

)

and ψ2 = ψ·ψ =

(

x1 x2 x3

x3 x1 x2

)

G = {e, φ, ψ, φ · ψ,ψ · φ, ψ2} = S3.
G is a non-abelian group under composition of function and it is a symmet-
ric group of order 3, and denoted by S3.O(S3) = 3! = 6.

· e φ ψ φ · ψ ψ · φ ψ2

e e φ ψ φ · ψ ψ · φ ψ2

φ φ e φ · ψ φ ψ2 ψ · φ
ψ ψ ψ · φ ψ2 φ φ · ψ e
φ · ψ φ · ψ ψ2 ψ · φ e ψ φ
ψ · φ ψ · φ ψ φ ψ2 e φ · ψ
ψ2 ψ2 ψ · φ e ψ · φ φ ψ
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Example 1.7 Let S be a non-empty the set having finite number of ele-
ments then A(s), the set of all permutations of S (i.e. the set of all 1 − 1,
onto functions from S onto itself). So, it is a non-abelian group under the
composition of function.

Example 1.8 Let

G = {

(

a b
c d

)

|a, b, c, d ∈ R and ad− bc 6= 0}

Then G is an infinite non-abelian group under matrix multiplication.

Lemma 1.9 If G is a group, then

1. the identity element of G is unique,

2. every element a ∈ G has unique inverse in G,

3. for any a ∈ G, (a−1)−1 = a,

4. for all a, b ∈ G, (ab)−1 = b−1 · a−1.

Definition 1.10 subgroup: A non-empty subset H of a group G is said to
be subgroup of G, if under the product G, H itself form a group.

Example 1.11 1. (2Z,+) is a subgroup of (z,+),

2. (3Z,+) is a subgroup of (Z,+),

3. In general, (nZ,+) is a subgroup of (Z,+),

4. H={1,-1} is a subgroup of G={1,-1,i,-i} under usual multiplication.

Remark 1.12 If H is a subgroup of G, and G is a subgroup of K then H
is a subgroup of K.

Lemma 1.13 A non-empty subset H of the group G is a subgroup of G iff

1. a, b ∈ H ⇒ ab ∈ H

2. a ∈ H ⇒ a−1 ∈ H

Lemma 1.14 If H is a non-empty finite subset of a group G and H is
closed under multiplication then H is a subgroup of G.

Example 1.15 Let S be any non-empty set. Then A(s) is a group under
composition of mapping. Let x0 ∈ S. Let H(x0) = {φ ∈ A(s)|φ(x0) = x0}.
Then H(x0) is a subgroup of A(s).
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Example 1.16 S = {x1, x2, x3} : A(s) = s3 [∵ H(x1) = {e, ψ.φ}
H(x1) = {φ ∈ A(s)/φ(x1) = x1} H(x2) = {e, φ.ψ}
A(s) = {e, φ, ψ, ψ.φ, φ.ψ, ψ2} H(x3) = {e, φ}]
Here, H(x1),H(x2) and H(x3) are subgroups of S3

Remark 1.17 H(x1) ∩H(x2) = H(x2) ∩H(x3) = H(x3) ∩H(x1) = {e}.

Definition 1.18 Cyclic Group: Let G be any group, a ∈ G. Let 〈a〉 =
{ai/i ∈ z} = {....a−2, a−1, a0, a1, a2...}. Then 〈a〉 is called as cyclic subgroup
generated by a. If 〈a〉 = G for some a ∈ G then G is said to be a cyclic
group.

Example 1.19 Consider G = {1,−1, i,−i}, let a = i. Then 〈a〉 = G, G is
cyclic.

Example 1.20 Let G be the group of all real number addition (R,+) and
let H be the set of all integers under addition. Then H is a subgroup of G.

Example 1.21 Let

G = {

(

a b
c d

)

|a, b, c, d ∈ R and ad− bc 6= 0}is a group under multiplication

H = {

(

a b
0 d

)

|a, b, d ∈ Z}

K = {

(

1 b
0 1

)

|b ∈ R}

Then H is a subgroup of G and K is a subgroup of H.

Example 1.22 Let G be a group of all non-zero complex number,(i.e.) G =
C = {a + ib , both a and b are not zero} under multiplication. Let H =
{a+ ib|a2 + b2 = 1} = {z ∈ C| |z| = 1}. Then H is a subgroup of G.

Definition 1.23 Let G be a group, H be a subgroup of G; for a, b ∈ G we
say a is congruent to b mod H,written as a ≡ b(modH) if ab−1 ∈ H.

Lemma 1.24 The relation ′ ≡′ is an equivalence relation.

Definition 1.25 Right Cosets: If H is a subgroup of G, a ∈ G then
Ha = {ha|h ∈ H}. Ha is called a right cosets of H in G.

Example 1.26 Let G = {J12,⊕},H = {0, 4, 8}. Then Distinct right cosets
of H in G are H,H ⊕ 1,H ⊕ 2,H ⊕ 3.

Lemma 1.27 For all a ∈ G,Ha = {x ∈ G|a ≡ x(mod H)}
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Lemma 1.28 There is a 1 − 1 correspondence between any two right cosets
of H in G.

Theorem 1.29 Lagrange’s Theorem: If G is a finite group and H is a
subgroup of G, then O(H) is the divisor of O(G), converse of the Lagrange’s
theorem need not be true.

Example 1.30 1. Let G = {1,−1, i,−i},H = {i,−1}. Then O(H)/O(G)
but H is not a subgroup of G.

2. Let G = S3 = {e, p1, p2, p3, p4, p5},H = {p− 1, p2}. Then O(H)/O(G)
but H is not a subgroup of G.

Definition 1.31 Index: If H is a subgroup of G, the index of H in G is
the number of distinct right cosets of H in G. It is denoted by iG(H).

Remark 1.32 iG(H) = O(G)
O(H)

Example 1.33 Let G = {Z12,⊕12};H = {0, 4, 8}. Then iG(H) = 4 =

12/3 = O(G)
O(H)

Definition 1.34 If G is a group and a ∈ G. The order of a (period of a)
is the least positive integer m such that am = e. If no such integer exists,
we say that a is of infinite order.

Example 1.35 Let G = {1,−1, i,−i}

1. a = −1 ⇒ a2 = (−1)2 = 1 ⇒ O(a) = 2

2. a = i ⇒ a4 = i4 = 1 ⇒ O(a) = 4.

Example 1.36 In (Z12,⊕), O[2] ∈ Z12

now, O([2]) = 6 {∵ [2]6 = [2] + [2] + [2] + [2] + [2] + [2] = 0}
O[3] = 4; O([6]) = 2.

Example 1.37 Let (Z,+), e=0. Then 1 ∈ Z is of infinite order.

Corollary 1.38 If G is a finite group and a ∈ G, then O(a) divides O(G).

Corollary 1.39 If G is finite and a ∈ G, then aO(G) = e.

Definition 1.40 Euler function φ(n): φ(1) = 1, φ(n) = number of posi-
tive integers less than n and relatively prime to n for n > 1.
φ(8) = 4 (∵ 1, 3, 5, 7 are relatively prime to 8), φ(5) = 4, φ(7) = 6, φ(10) =
4, φ(15) = 7.
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Corollary 1.41 If n is a positive integer and a is relatively prime to n
((a, n) = 1), then aφ(n) ≡ 1(mod n).

Corollary 1.42 (i) If P is a finite prime number and a is any integer than
ap ≡ a(mod p)
(ii) If G is a finite group of prime order then G is cyclic.

Counting principle: Let H,K be any two subgroups of a group G. Let
HK = {hk/h ∈ H,K ∈ k}.

Example 1.43 Consider the group G = S3 = {e, φ, ψ, φ · ψ,ψ · φ, ψ2}. Let
H = {e, φ} and K = {e, φ ·ψ}. Then HK = {e · e, e(φ ·ψ), φ · e, φ · (φ ·ψ)} =
{e, φ · ψ, φ, ψ}. Here HK is not a subgroup of G. Because, it is not closed
under (·). (φ ·ψ, φ ∈ HK but (φ ·ψ) ·φ = ψ2 /∈ HK)(i.e.) H and K are the
subgroups of G but HK is not the subgroups of G. Since O(HK) does not
divides O(G), by Lagrange’s Theorem, HK need not be a subgroup of G.

Lemma 1.44 HK is a subgroup of G iff HK = KH.

Corollary 1.45 If H and K are subgroups of an abelian group G, then HK
is a subgroup of G.

Theorem 1.46 If H and K are finite subgroups of orders O(H) and O(K)

then O(HK) = O(H) O(K)
O(H∩K) .

Corollary 1.47 Suppose H and K are the subgroup of a group G and order
of H is greater than

√

O(G) (i.e.) O(H) >
√

O(G). Then H ∩ K 6= {e}
(non-trivial).

Normal Subgroups and Quotient groups:

Definition 1.48 A subgroup N of a group G is said to be a normal subgroup
of G if for every g ∈ G and n ∈ N, gng−1 ∈ N .

Result 1.49 N is a normal subgroup of G ⇔ gNg−1 = N .

Result 1.50 A subgroup N of a group G is a normal subgroup of G ⇔
every left cosets of N in G is a right cosets of N in G.

Result 1.51 A subgroup N of a group G is a normal subgroup of G ⇔ the
product of any two right cosets of N in G is again a right cosets of N in G.

Theorem 1.52 If G is a group and N is a normal subgroup of G, then
G/N = {Na|a ∈ G}. Let X = Na, Y = Nb ∈ G/N . Define X · Y =
Na · Nb = Nab. Under this product (·), G/N is a group which is called a
quotient group (or) a factor group of G/N
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Example 1.53 Let G = (Z12,⊕12) and N = {0, 4, 8}.
Then G = {N ⊕ 0, N ⊕ 1, N ⊕ 2, N ⊕ 3}.

Lemma 1.54 O(G/N) = O(G)
O(N)

Homomorphism:

Definition 1.55 A mapping φ from a group G into a group Ḡ is said to be
a homomorphism if for all a, b ∈ G,φ(ab) = φ(a) · φ(b).

Example 1.56 1. Let G be any group. Define φ : G → G by φ(x) =
e ∀x ∈ G, where e is the identity element of G. Then φ is a homo-
morphism of G into Ḡ. Let x, y ∈ G ⇒ xy ∈ G, φ(x) = e, φ(y) =
e, φ(xy) = e = e · e = φ(x) · φ(y).

2. Let G be a group. Define φ : G → G by φ(x) = x ∀x ∈ G. Then φ is a
homomorphism. Let a, b ∈ G ⇒ ab ∈ G,φ(a) = a;φ(b) = b, φ(a · b) =
ab = a · b = φ(a) · φ(b) ∀a, b ∈ G.

3. Let G be a group of all real numbers under addition and let Ḡ be group
of non-zero real numbers with a product being ordinary multiplication
of real numbers. (i.e.) G = (R,+); Ḡ = (R−{0}, ·). Define φ : G → Ḡ
by φ(a) = 2a. Then φ is a homomorphism. Let a, b ∈ G ⇒ a+ b ∈ G.
Now, φ(a+ b) = 2a+b = 2a · 2b = φ(a) · φ(b) ∀a, b ∈ G.

4. Let G = S3 = {e, φ, ψ, φ ·ψ,ψ ·φ, ψ2} and Ḡ = {e, φ}. Define f : G →
Ḡ by f(φi · ψj) = φi. f(e) = e; f(φ) = φ; f(ψ) = e; f(φ · ψ) =
φ; f(ψ · φ) = f(φψ2) = φ; f(ψ2) = e. Clearly, f is a homomorphism.
Let x = φi ψj , y = φr ψs. f(xy) = f(φi+r · ψj+s) = φi+r = φi · φr =
f(φi ψj) · f(φr ψs) = f(x) · f(y).

5. Let G be the group of non-zero real numbers under multiplication. Let
Ḡ = ({1,−1}, ·)[(i.e.) G = (R− {0}, ·)]. Define φ : G → Ḡ by

φ(x) =

{

1 if x is positive

−1 if x is negative

(a) Let x, y ∈ G ⇒ x and y are positive and φ(x) = 1;φ(y) = 1 ⇒ xy
is positive. Then φ(xy) = 1 = 1 · 1 = φ(x) · φ(y),

(b) x and y are negative ⇒ φ(x) = −1;φ(y) = −1 ⇒ xy is positive.
Then φ(xy) = 1 = −1 · −1 = φ(x) · φ(y),

(c) x is positive and y is negative ⇒ φ(x) = 1 and φ(y) = −1 ⇒ xy
is negative. Then φ(xy) = −1 = 1 · −1 = φ(x) · φ(y),

(d) x is negative and y is positive ⇒ φ(x) = −1 and φ(y) = 1 ⇒ xy
is negative. Then φ(xy) = −1 = −1 · 1 = φ(x) · φ(y).
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6. Let G be a group of integers under addition,(i.e.) G = (z,+) and
Ḡ be the group of integers under addition modulo n. (i.e.) Ḡ =
(Zn,⊕n). Define φ : G → Ḡ by φ(x)=Remainder of x on division
by n = r(mod n). Clearly, φ is a homomorphism.

7. Let G be a group of positive real number under multiplication and Ḡ
be the group of all real numbers under addition. Define φ : G → Ḡ
by φ(x) = log10x. Let x, y ∈ G. Then φ(xy) = log10xy = log10x +
log10y = φ(x) + φ(y). Then, φ is a homomorphism. (∵ the operation
on the RHS in Ḡ is infact addition).

Theorem 1.57 Suppose G is a group, N a normal subgroup of G; define a
mapping φ : G → G/N by φ(x) = Nx ∀x ∈ G. Then φ is a homomorphism
of G onto G/N .
Proof: Let x, y ∈ G. Then φ(x) = Nx, φ(y) = Ny. Now, φ(xy) = Nxy =
Nx · Ny = φ(x) · φ(y). Hence, φ is a homomorphism. Let X ∈ G/N , then
X = Nx, x ∈ G. Then φ(x) = Nx = X. Therefore φ is onto. Thus, φ is a
homomorphism of G onto G/N .

Remark 1.58 It is true that a homomorphism need not be 1 − 1.

Definition 1.59 If φ is a homomorphism of G× Ḡ, the kernal of φ (Kφ),
defined by Kφ = {x ∈ G|φ(x) = ē, ē is the identity element of Ḡ}. Clearly
Kφ is a subset of G.

Example 1.60 1. Define φ : G → G by φ(x) = e ∀x ∈ G. Then Kφ =
{x ∈ G|φ(x) = e} = G.

2. Define φ : G → G by φ(x) = x ∀x ∈ G. Then Kφ = {x ∈ G|φ(x) =
x} = e.

3. Define φ : G → Ḡ by φ(a) = 2a ∀a ∈ G. Then Kφ = {a ∈ G|φ(a) =
2a} = {0}.

4. Define f : G → Ḡ by f(φi ψi) = φi. Then Kφ = {φ ∈ G|f(φi ψi) =
φi} = {e, ψ, ψ2}.

5. Define φ : G → Ḡ by

φ(x) =

{

1 if x is positive

−1 if x is negative.

Then Kφ = {x ∈ G|φ(x) = 1 = e,if x is positive } =set of all positive
numbers in G.

6. Define φ : G → Ḡ by φ(x) = log10x. Then Kφ = {x ∈ G|φ(x) =
log10x} = {1}.
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Lemma 1.61 If φ is a homomorphism of G× Ḡ,then

1. φ(e),the unit element in Ḡ,

2. φ(x−1) = (φ(x))−1,∀x ∈ G.

Proof: 1. Let x ∈ G,φ(x) ∈ Ḡ. Now, φ(x) · ē = φ(x) = φ(x · e) =
φ(x) · φ(e) ⇒ φ(e) = ē (By LCL)
2. By (1), we have φ(e) = ē ⇒ ē = φ(e) = φ(x · x−1) = φ(x) · φ(x−1) ⇒
φ(x−1) = [φ(x)]−1

Remark 1.62 Since e is the kernal of any homoomorphism, Kφ is not
empty.

Lemma 1.63 If φ is the homoomorphism of G into Ḡ with kernal K, then
K is a normal subgroup of G.
Proof: Let x, y ∈ K. Then φ(x) = ē, φ(y) = ē. Now, φ(xy) = φ(x) · φ(y) =
ē · ē = ē ⇒ xy ∈ K ..............(i).
Now,φ(x−1) = [φ(x)]−1 (by (2) of Lemma 1.61) φ(x−1) = (e−1)−1 = e ⇒
x−1 ∈ K ..............(ii).
By (i) and (ii), K is a subgroup of G. Let g ∈ G and k ∈ K,φ(k) = ē. Now,
φ(gkg−1) = φ(g) φ(k) φ(g−1) = φ(g) φ(k) [φ(g)]−1 = φ(g) ē [φ(g)]−1 =
(φ(g)) [φ(g)]−1 ⇒ φ(gkg−1) = ē ⇒ gkg−1 ∈ K, ∀g ∈ G, k ∈ K. Therefore
K is a normal subgroup of G.

Lemma 1.64 If φ is a homomorphism of G onto Ḡ with kernal K,then the
set of all inverse images of ḡ ∈ Ḡ under φ in G is group by Kx, where x is
any particular inverse image of ḡ in G.
Proof: We have to prove Kx = {φ−1(ḡ), x ∈ G|φ(x) = ḡ} If y ∈ Kx ⇒ y =
kx, k ∈ K. (Since k ∈ K,φ(k) = ē) Now, φ(y) = φ(kx) = φ(k) ·φ(x) = ē · ḡ =
ḡ ⇒ y ∈ φ−1(ḡ), Therefore kx C{φ−1(ḡ)}...........(i)
Does all the elements of Kx are in the collection of inverse images of Ḡ
whenever exists? Let us check can there be any other. Suppose that
Z = G ∋: φ9 = (Z) = ḡ = φ(x) ⇒ φ(Z) = φ(x) ⇒ φ(Z) · [φ(x)]−1 =
ē ⇒ φ(Z) φ(x−1) = ē ⇒ φ(Z x−1) = ē ⇒ Z x−1 ∈ K ⇒ Z ∈ Kx ⇒
{φ−1 (ḡ)} C kx.........(ii)
from (i) and (ii), kx = {φ−1(ḡ)}.

Result 1.65 Let φ : G → Ḡ be a (function) homomorphism. Kφ = {e} iff
φ is 1 − 1.
Proof: Suppose φ is 1−1. Let x, y ∈ G. Let x ∈ Kφ ⇒ φ(x) = ē = φ(e) [By
Lemma 1.61(1)] ⇒ φ(x) = φ(e) ⇒ x = e [∵ φ is 1 − 1]. Conversely suppose
thatKφ = {e}. To prove: φ is 1−1. Suppose, φ(x) = φ(y) ⇒ φ(x)[φ(y)]−1 =
ē ⇒ φ(x) (φ(y−1)) = ē ⇒ φ(xy−1) = ē [∵ φ is homomorphism] ⇒ xy−1 ∈
Kφ = {e} ⇒ xy−1 = e ⇒ x = y ⇒ φ is 1 − 1.
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Definition 1.66 A homomorphism φ : G → Ḡ is said to be an isomorphism
if φ is 1-1.

Remark 1.67 φ : G → Ḡ is an isomorphism ⇔ Kφ = {e}.

Definition 1.68 Two groups G,G∗ are said to be isomorphic if there is an
isomorphism of G onto G∗. It is denoted by G ∼= G∗. [(i.e.) φ : G → G∗, φ
is 1 − 1, onto and homomorphism if G ∼= G∗].

Result 1.69 Isomorphic ’∼=’ is an equivalence relation.
Proof:

1. Let iG : G → G define by iG(x) = x ∀x ∈ G, is a identity function
on G. Clearly identity function is 1 − 1, onto and homomorphism. So
G ∼= G is reflexive.

2. Now, let G ∼= G∗ and f : G → G∗ be an isomorphism.
⇒ f is 1 − 1, onto and homomorphism.
⇒ f−1 : G∗ → G is also 1−1 and onto. [since f(a) = (b) ⇒ f−1(b) = a]
Now, let x∗, y∗ ∈ G∗.
Let f−1(x∗) = x and f−1(y∗) = y.
⇒ f(x) = x∗ and f(y) = y∗.
f(xy) = f(x)f(y) = x∗y∗

f−1(x∗y∗) = xy = f−1(x∗)f−1(y∗).
∴ f−1 is homomorphism.
∴ f−1 is 1 − 1,onto and homomorphism.
⇒ G∗ ∼= G and hence symmetric.

3. Now let G ∼= G∗ and G∗ ∼= G∗∗ with f : G → G∗ and g : G∗ → G∗∗.
Hence f and g are bijections and g ◦ f : G → G∗∗ is also a bijection.

{∵ Let x, y ∈ G.
⇒ (g ◦ f)(x) = (g ◦ f)(y)

Now let x, y ∈ G. ⇒ g(f(x)) = g(f(y))
Then (g ◦f)(xy) = g(f(xy)) ⇒ f(x) = f(y) [∵ g in 1−1]
= g(f(x)f(y)) (∵ f is homomorphism) ⇒ x = y (∵ f is 1 − 1)
= g[f(x)] g[f(y)] ∴ g ◦ f is also 1 − 1
= (g ◦ f)(x)(g ◦ f)(y) g(y) = z (∵ g is onto)
∴ g ◦ f is isomorphism. f(x) = y(f is onto)

g ◦ f(x) = g[f(x)]
= g(y) = z.
∴ g ◦ f is onto.}

⇒ G ∼= G∗∗ ⇒ transitive. Thus ′ ∼=′ is an equivalence relation.

Corollary 1.70 A homomorphism φ : G into Ḡ with kernal Kφ is an iso-
morphism iff Kφ = {e}.
Proof: Suppose φ : G → Ḡ is an isomorphism with kernal Kφ.
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To prove: Kφ = {e}
Let x ∈ Kφ.
⇒ φ(x) = ē = φ(e)
⇒ x = e
⇒ Kφ = {e} [Since φ is 1 − 1].
Conversely suppose φ : G → Ḡ is a homomorphism with kernal Kφ = {e}.
To prove: φ is an isomorphism. It is enough to prove that φ is 1 − 1.
Suppose φ(x) = φ(y)
⇒ φ(x)[φ(y)]−1 = e
⇒ φ(x)[φ(y)−1] = e
⇒ φ(xy−1) = e
⇒ xy−1 = e ⇒ x = y. Therefore φ is 1 − 1.

Theorem 1.71 Let φ be a homomorphism of G onto Ḡ with kernal K.
Then G/K ∼= Ḡ.
Proof: Given: φ : G → Ḡ is an onto homomorphism and Kφ = K = {x ∈
G|φ(x) = ē, identity in Ḡ}. Define a function σ : G → G/K by σ(y) = Ky

and ψ : G/K → Ḡ by ψ(Kg) = φ(g). To prove:

1. ψ is well defined: Suppose, Kg = Kg′ ⇒ g ∈ Kg′ ⇒ g = kg′, k ∈ K ⇒
φ(g) = φ(kg′) = φ(k) φ(g′) = ēφ(g′) = φ(g′) ⇒ ψ(Kg) = ψ(Kg′).
Therefore ψ is well defined.

2. ψ is onto: Let ḡ ∈ Ḡ. ∵ φ : G → Ḡ is onto, there exists an element
g ∈ G such that φ(g) = ḡ ⇒ ψ(Kg) = ḡ (i.e.) Every element ḡ ∈ Ḡ
has inverse Kg under ψ. ∴ ψ is onto.

3. ψ is a homomorphism: Let x = Kg and y = Kg′ ∈ G/K. Now,
ψ(xy) = ψ(Kg ·Kg′) = ψ(Kgg′) = φ(gg′) (by defn) =φ(g) φ(g′)[∵ φ is
homomorphism]=ψ(kg) ψ(kg′) = ψ(x)ψ(y). ∴ ψ is a homomorphism.

4. ψ is 1−1: To prove: ψ is 1−1. It is enough to prove that Kψ = {e} =
{x ∈ G/K|ψ(x) = ē} = {x = Kg, g ∈ G|ψ(Kg) = ē} = {g ∈ G|φ(g) =
ē} = {g ∈ G|g = ē} = {e} ⇒ ψ is 1 − 1. Thus ψ : G/K → Ḡ is 1 − 1,
onto homomorphism. Hence G/K ∼= Ḡ.

Remark 1.72 The above theorem tells that a group can be expected to arise
from the homomorphic image of the general group must be expressible in the
form of G/K where K is normal in G. (i.e.) For any normal subgroup N of
G, G/N is a homomorphic image of G. Thus there is a 1−1 correspondence
between homomorphic images of G and normal subgroups of G.

Definition 1.73 Simple: A group G is said to be simple if it has no non-
trivial normal subgroups.
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Theorem 1.74 Cauchy’s Theorem for Abelian Groups:

Suppose G is a finite abelian group and p/O(G), where p is a prime number.
Then there is an element a 6= e ∈ G such that ap = e.
Proof: We have to prove this theorem by induction over order of G [O(G)].
The theorem is clearly true for a group having single element. Assume that
the theorem is true for all abelian groups having fewer elements than G.
case(i)If G has no subgroup H 6= {e}. Claim that G must be a cyclic group
of prime order. Consider an element a ∈ G, a 6= {e}. Take H = 〈a〉. Then
H is a subgroup of G and H 6= {e}. Therefore By hypothesis, H = G = 〈a〉.
⇒ G = 〈a〉, since G has no improper subgroup. Therefore G is a cyclic
group. Any cyclic group is isomorphic to (Z,+) or (Zn,⊕). Since G is
finite, G ∼= Zn, for some n. Claim that n is prime. Suppose not, (i.e) n is
composite. Let n = pq, 1 < p < n, 1 < q < n where p and q are primer.
Now the subgroup generated by a, (i.e) 〈ap〉 is a proper subgroup of G of
order G. (i.e) G has a proper subgroup which is not equal to {e}, which is
a contradiction. Therefore our assumption is wrong. Therefore n is prime.
Hence G is a cyclic group of prime order. Then G has p− 1 elements. By a
corollary to Lagrange’s theorem ap = aO(G) = e and a 6= e.
case(ii) Suppose G has a improper subgroup N 6= {e}
subcase:(a)
If p/O(N)
Since O(N) < O(G) and N is abelian, by induction hypothesis there is an
element b ∈ N, b 6= e such that bp = e.[∵ p/O(N) and N is abelian and
O(N) < O(G) By induction hypothesis] b ∈ N ⊂ G ⇒ b ∈ G. Thus there
exists an element b ∈ G such that bp = e and b 6= {e}.
subcase:(b)
Suppose G has a proper subgroup N 6= {e} and p does not divides O(N).
Since G is a abelian and N is a normal subgroup of G, G/N is a group. [∵

subgroup of an abelian group is normal]. Moreover, O(G/N) = O(G)
O(N) , since

p/O(G) and p does not divides O(N), p divides O(G)
O(N) . [If not,(i.e) if p does

not divides O(G)
O(N) ⇒ p does not divides O(G/N) and p/O(N) ⇒ p does not

divides O(G), which is a contradiction]. (i.e) p/O(G/N) and O(G/N) <
O(G). Therefore by induction hypothesis there exists and element x ∈
G/N, x 6= N such that xp = N............(1)
∵ x ∈ G/N, x = Nb Where b ∈ G and N = Ne. By (1), xp = N ⇒
(Nb)p = N ⇒ Nbp = N [∵ Ha = H ⇔ a ∈ H] ⇒ bp ∈ N and b /∈ N
⇒ (bp)O(N) = e [∵ a ∈ G, aO(G) = e] ⇒ bpO(N) = e ⇒ (bO(N))p = e. Let
bO(N) = c. Therefore cp = e, c ∈ N ⊂ G.
claim that c 6= e
Suppose c = e.
⇒ bO(N) = e ⇒ NbO(N) = Ne = N ⇒ NbO(N) = N ⇒ Nb = N ⇒ b ∈ N
⇒⇐ to b /∈ N . Hence, c 6= e. Thus there exists an element c ∈ G, c 6= e
such that cp = e. Hence, the theorem.
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Theorem 1.75 Sylow’s theorem for finite abelian Groups: If G is an
abelian group of order, O(G) and p is a prime number such that pα/O(G)
and pα+1 does not divides O(G). Then G has a subgroup of order pα.
Proof: If α = 0, then the subgroup {e} satisfies the conclusion of the result.
Suppose α 6= 0. [pα = p0 = 1/O(G), pα+1 = 21 does not divides O(G)].
Then p/O(G), and G is abelian. [∵ p/pα/O(G) ⇒ p/O(G)]. Therefore by
Cauchy’s theorem for finite abelian group there exists an element a 6= e
satisfying ap = e. Let S = {x ∈ G|xp

n

= e, for some integer n}. ∵ e ∈ G
and ep

n

= e, e ∈ S. Therefore S is non-empty. a 6= e, ap = e ⇒ ap
1

= e ⇒
a ∈ S ⇒ S 6= {e}.
Claim(i) S is a subgroup of G
Let x, y ∈ S ⇒ xp

n

= e and yp
m

= e for some intega n,m. Now (xy)p
mn

=
xp

mn

· yp
mn

= (xp
n

)m · (yp
m

)n = em · en = e ⇒ xy ∈ S. Therefore S is a
subgroup of G [∵ S is finite]. Hence, the Claim(i).
Claim:(ii) O(S) = pβ, O < β ≤ α
Suppose q 6= p and q/O(S). Therefore by Cauchy’s theorem, there exists
an element c ∈ S, c 6= e such that cq = e. ∴ c ∈ S there exists an integer
n ≥ O such that cp

n

= e. Also, (pn, q) = 1. Therefore integer λ and µ such
that λpn + µq = 1. Now, c = c1 = cλp

n+µq = cλp
n

· cµq = (cp
n

)λ · (cq)µ =
eλ · eµ = e · e ⇒ c = e ⇒⇐ to the fact that c 6= e. Thus there exists no
prime number other than p which divides O(S). ∵ S is a subgroup of G, by
Lagranges theorem O(S)/O(G). Let O(S) = pβ , for some integer β, then
we get β ≤ α. Suppose, β < α. Consider the abelian group (G/S). Since

β < α, and O(G/S) = O(G)
O(S) , p/O(G/S)

[∵ pα/O(G) ⇒ O(G) = kpα

O(S) = pβ , β < α, α− β > 0, α− β = γ > 0
O(G/S) = O(G)/O(S) = kpα/pβ = kpα−β = kpγ

p/kpγ ⇒ p/O(G/S)]
∵ S is a normal subgroup of G and G is abelian, G/S is a group.
By Cauchy’s theorem for finite abelian group there exists an element Sx ∈
G/S, Sx 6= S such that (sx)p

n

= S ⇒ Sxp
n

= S ⇒ xp
n

∈ S[a ∈ G, aO(G) =

e] ⇒ (xp
n

)O(S) = e ⇒ (xp
n

)β = e ⇒ xp
n+β

= e, n + β > 0, integer
⇒ x ∈ S ⇒ Sx = S[a ∈ H ⇔ Ha = H] ⇒⇐to Sx 6= S. Therefore our
assumption is wrong. (i.e) β < α. Therefore β = α. ∴ O(S) = pβ = pα.
Hence,G has a subgroup S such that O(S) = pα

Corollary 1.76 If G is an abelian group of O(G) and pα/O(G), pα+1 does
not divides O(G) then there is a unique subgroup of G of order pα.(p sylow
subgroup)
Proof: Suppose S and T are two subgroups of order pα where pα/O(G)
and pα+1 does not divides O(G)
Suppose S 6= T,O(S) = pα, O(T ) = pα. Now O(ST ) = O(S)O(T )/O(S ∩
T ) = pαpα/O(S ∩ T ) = p2α/O(S ∩ T ). ∵ S 6= T and S ∩ T ⊂ S,O(S ∩ T ) <
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O(S) = pα. (i.e) O(S ∩ T ) < pα. Therefore O(ST ) = pγ , γ > α. ∵ G is
abelian, ST = TS. Therefore ST is a subgroup of G, by Lagrange’s Theo-
rem O(ST )/O(G). (i.e) pγ/O(G), γ > α ⇒ pα+1/O(G) ⇒⇐ to pα+1 does
not divides O(G). This contradition shows that S = T . Therefore there
exists a unique subgroup of G of order pα

Lemma 1.77 Let φ be a homomorphism of G onto Ḡ with kernal K. For
H̄ a subgroup of Ḡ, let H be defined by H = {x ∈ G|φ(x) ∈ H̄}. Then
(i) H is a subgroup of G
(ii) H contains K and
(iii) if H̄ is normal in Ḡ then H is normal in G. Moreover this association
sets up a 1 − 1 mapping from the set of all subgroup of Ḡ onto the set of all
subgroups of G which contains K.
Proof: Let x, y ∈ H. Then φ(x), φ(y) ∈ H. Now, φ(xy) = φ(x) · φ(y) ∈ H̄
[∵ H̄ is a subgroup of Ḡ]. Therefore φ(xy) ∈ H̄..........(i)
By definition, xy ∈ H. φ(x−1) = [φ(x)]−1 [∵ φ is homomorphism]⇒
φ(x−1) ∈ H̄. Therefore x−1 ∈ H (by definition)..........(ii). By (i) and
(ii), H is a subgroup of G
To prove: H ⊃ K
Let x ∈ K ⇒ φ(x) = ē ∈ Ḡ [∵ H̄ is a subgroup of Ḡ] ⇒ φ(x) = ē ∈ H̄ [∵
identity is unique in Ḡ] ⇒ x ∈ H (by definition) ∴ K ⊂ H
To prove: H is normal in G
Given:H̄ is normal in Ḡ. Let g ∈ G and h ∈ H. Therefore φ(g) ∈ Ḡ
and φ(h) ∈ H̄ (by definition) and φ is onto map. Since H̄ is normal in Ḡ,
φ(g)φ(h)φ(g−1) ∈ H̄. (i.e) φ(ghg−1) ∈ H̄ ⇒ ghg−1 ∈ H. Therefore H is
normal G. Hence given a subgroup H̄ of Ḡ, we have a subgroup of H of G
such that H ⊃ K.
Conversely, suppose that L is a subgroup of G and L ⊃ K. Let L̄ = {x̄ ∈
Ḡ|x̄ = φ(x), x ∈ L}. Claim that L̄ is a subgroup of Ḡ. Let x̄ · ȳ ∈ L̄. There-
fore x̄ = φ(x), ȳ = φ(y) ⇒ x̄ · ȳ = φ(x) · φ(y), x, y ∈ L = φ(x · y), x, y ∈ L ⇒
x̄ · ȳ ∈ L̄ (by definition) and (x̄)−1 = [φ(x)]−1, x ∈ L = φ(x−1), x−1 ∈ L.
Therefore x−1 ∈ L̄. Define: T = {x ∈ G|φ(x) ∈ L̄}. The correspondence
is 1 − 1 ⇔ L = T . x ∈ L ⇒ x̄ = φ(x) ∈ L̄ (by definition of L̄) ⇒ x ∈ T .
Therefore L ⊂ T ..........(iii)
Conversely, let t ∈ T , φ(t) ∈ L̄ ⇒ φ(t) = φ(e), e ∈ L. Therefore φ(te−1) =
φ(t)φ(e−1) = φ(t)[φ(e)]−1 = φ(t)[φ(t)]−1 = ē. Therefore te−1 ∈ K ⊂ L ⇒
te−1 ∈ L ⇒ t ∈ Le ⇒ t ∈ L. Therefore T ⊂ L..........(iv)
From (iii) and (iv), T = L
Therefore the correspondence is 1 − 1.

Theorem 1.78 Let φ be a homomorphism of G onto Ḡ with kernal K.
Let N̄ be a normal subgroup of Ḡ, N = {x ∈ G|φ(x) ∈ N̄}. Then G/N
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isomorphic to Ḡ/N̄ . Equivalently G/N ∼= (G/K)/(N/K)
Proof: Let φ : G → Ḡ is a homomorphism. Then θ : Ḡ → Ḡ/N̄ by
θ(ḡ) = N̄ ḡ is a homomorphism of Ḡ onto Ḡ/N̄ . Now, define ψ : G → Ḡ/N̄
by ψ(g) = θ · φ(g). (i.e) ψ(g) = N̄φ(g). ∵ θ and φ are onto mapping, ψ is
also onto mapping.
ψ is a homomorphism:
Suppose a, b ∈ Ḡ. Then ψ(a) = N̄φ(a) and ψ(b) = N̄φ(b). Now, ψ(a ·
b) = N̄φ(ab) = N̄ [φ(a) · φ(b)] = N̄φ(a) · N̄φ(b) = ψ(a) · ψ(b). ∴ ψ is a
homomorphism. Let T be the kernal of ψ. (i.e) T = {g ∈ G|ψ(g) = N̄}, N̄
is identity in Ḡ/N̄ .
Claim that T = N . Let n ∈ N ⇒ φ(n) ∈ N̄ [∵ N = {x ∈ G/O(x) ∈
N̄}] ⇒ N̄φ(n) = N̄ ⇒ ψ(n) = N̄ ⇒ n ∈ T [ by the definition of T ].
∴ N ⊂ T ..........(1)
Let t ∈ T ⇒ ψ(t) = N̄ ⇒ N̄ · φ(t) = N̄ ⇒ φ(t) ∈ N̄ ⇒ t ∈ N [by the
definition of N̄ ]. ∴ T ⊂ N ..........(2)
From (1) and (2) T = N . Thus ψ is a homomorphism of G onto Ḡ/N̄ with
kernal N . By the fundamental theorem of homomorphism, G/N ∼= Ḡ/N̄ .
∵ Ḡ ∼= G/K and N̄ ∼= N/K
[∵ φ : G onto Ḡ is a homomorphism with kernal K]
⇒ G/K ∼= Ḡ
and φ/N : N onto N is a homomorphism with kernal K̄
⇒ N/K ∼= N̄

∴ G/N ∼=
G/K
N/K [∵ Ḡ is isomorphic to G/K]

and N̄ ∼= N/K
∵ φ : G onto Ḡ is a homomorphism with kernal K.
φ/N : N onto N̄ is a homomorphism with kernal K.

∴ G/N ∼=
G/K
N/K [by above theorem]

This theorem is known as first homomorphism theorem.

Theorem 1.79 CAYLEY’S THEOREM: Every group is isomorphic to
a subgroup of A(S) for some appropriate S, Where A(S) is the set of all
1 − 1 mapping from S onto S. (i.e.) set if all bijection on S.
Proof: Let G be a group, choose S = G. Define Tg : S(G) → S(G) by
xTg = xg. Clearly Tg is well defined.
Tg is onto:
For y ∈ S, choose x = yg−1. Then xTg = (yg−1)Tg = yg−1g = y. (i.e.)
every element y ∈ G has pre-image yg−1 ∈ G under Tg. ∴ Tg is onto
Tg is 1 − 1:
Let x, y ∈ S. Suppose xTg = yTg ⇒ xg = yg ⇒ x = y (By RCL) ⇒ Tg
is 1 − 1. ∴ Tg ∈ A(S). Now, consider the map ψ : G → A(S),defined by
ψ(g) = Tg. Suppose g, h ∈ G, then (x)Tg ·Th = ((x)Tg)Th = (xg)Th = xgh =
(x)Tgh ∀x. ∴ Tg ·Th = Tgh ⇒ ψ(gh) = ψ(g) ·ψ(h). ∴ ψ is a homomorphism.
Let K be the kernal of ψ , then K = {g ∈ G|ψ(g) = ē, ē is the identity
in A(S)} = {g ∈ G|Tg = I, Identity function S → S} = {g ∈ G|xTg = x,
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Identity function S → S} = {g ∈ G|xg = x, Identity function S → S} =
{g ∈ G|g = e, Identity in G} = {e}. ∴ ψ is an isomorphism of G into S.
[By corollary to Lemma 1.64] A homomorphism φ : G → Ḡ with kernal Kφ

is an isomorphism of G into Ḡ ⇔ Kφ = {e}.

Theorem 1.80 If G is a group, H is a subgroup of G, and S is the set of all
right cosets of H in G, then there is a homomorphism θ of G into A(S), and
the kernal of θ is the largest normal subgroup of G,which is contained in H.
Proof: Let G be a group. Let H be a subgroup of G and S = {Hg|g ∈ G}.
Define tg : S → S by (Hx)tg = Hxg, ∀x ∈ G. Clearly, tg is well defined.
tg is onto: Suppose, Hy ∈ S. Consider, x = Hyg−1 ∈ S. Now, (x)tg =
(Hyg−1)tg = (Hyg−1)g = Hy. ∴ tg is onto.
tg is 1-1:
Let Hx,Hy ∈ S. Suppose (Hx)tg = (Hy)tg ⇒ Hxg = Hyg ⇒ Hx =
Hy. ∴ tg is 1 − 1. ∴ tg is 1 − 1 and onto, ⇒ tgn ∈ A(S). Define a function
θ : G → A(S) by θ(g) = tg. Clearly θ is well defined.
θ is a homomorphism:
For every Hx ∈ A(S), (Hx)tgh = Hxgh = (Hxg)th = ((Hx)tg)th ⇒
(Hx)tgh = ((Hx)tg)th ∀Hx ∈ S. This is true for every Hx ∈ S. ∴ tgh =
tg · th ⇒ θ(gh) = θ(g) ·θ(h). ∴ θ is a homomorphism. Let K be the kernal of
θ. K = {g ∈ G|θ(g) = ē, ē is identity in A(S)}={g ∈ G|tg = I, I : S → S is
identity} ={g ∈ G|(Hx)tg = (Hx)I, I : S → S is identity} ={g ∈ G|Hxg =
HxI, I : S → S is identity} ={g ∈ G|Hxg = Hx}.................(1)
={g ∈ G|xgx−1 ∈ H,∀x ∈ G} =Normal subgroup of G. ∴ kernal of a ho-
momorphism is a normal subgroup of G.
To prove: K ⊂ H
Suppose let b ∈ K. ∴ Hxb = Hx [by(1)] ∀x ∈ G. Put x = e ⇒ Heb =
He ⇒ Hb = H ⇒ b ∈ H [∵ Ha = H ⇔ a ∈ H]. ⇒ K ⊂ H. ∴ K is a
normal subgroup of G contained in H.
To prove: K is the largest normal subgroup of G.
Suppose N is a normal subgroup of G which is contained in H. Let n ∈ N .
∵ N is normal in G, xnx−1 ∈ N ∀x ∈ G ⇒ xnx−1 ∈ H [∵ N ⊆ H] ⇒
Hxn = Hx ∀x ∈ G[∵ Ha = Hb ⇔ ab−1 ∈ H] ⇒ n ∈ K [by(1)] ⇒ N ⊂ K.
∴ K is the largest normal subgroup of G contained in H.

Lemma 1.81 If G is a finite group and H 6= G is subgroup of G such that
O(G) does not divides i(H)!. Then H must contain a non trivial normal
subgroup of G. In particular G cannot be simple.
Proof: By above theorem, there is a homomorphism θ : G → A(S) where
S is the set of all right cosets of H in G. ∴ O(S) = i(H), index of H.
∴ O(A(S)) = i(H)!. If O(G) does not divides i(H)! = O(A(S)) ⇒ O(G)
does not divides O(A(S)). Then by Lagrange’s theorem, we have A(S) can
have no subgroup of order O(G). Hence no subgroup is isomorphic to G.
However, A(S) does not contain θ(G) ⊂ A(S). Hence, θ(G) cannot be
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isomorphic to G. (i.e.) θ cannot be an isomorphism but then kernal of θ is
non-trivial normal subgroup of H. (i.e.) Here G has a non-trivial normal
subgroup kernal of θ. Hence G cannot be simple.

Example 1.82 If G is a group of order 36 and H is a subgroup of order 9.
Then prove that, H contains a normal subgroup of order 3.
Proof: O(G) = 36;O(H) = 9; i(H) = O(G)

O(H) = 36/9 = 4; i(H)! = 4! =

24 ⇒ i(H)! < O(G). ∴ By above theorem, H contains non-trivial normal
subgroup N . (i.e.) N is a normal subgroup of H. ∴ By Lagrange’s Theorem,
O(N)/O(H). ∴ O(N)/9 ⇒ O(N) = 1 (or) O(N) = 3 (or) O(N) = 9. If
O(N) = 1, then N = {e} ⇒⇐ N 6= {e}. If O(N) = 9 ⇒ N = H ⇒⇐ N 6=
H. ∴ O(N) = 3.

Example 1.83 Suppose G is a group of order 99 and H is a subgroup of G
order 11. Then H is a normal subgroup of G.
Proof: O(G) = 99;O(H) = 11; i(H) = O(G)

O(H) = 99
11 = 9; i(H)! = 9!. ∴

By previous Lemma, H must contain a non-trivial normal subgroup N of
G ⇒ O(N)/O(H) = O(N)/11 ⇒ O(N) = 1 (or) O(N) = 11 but O(N) 6= 1,
since non-trivial. ∴ O(N) = 11 = O(H) ⇒ N = H. ∴ H is a normal
subgroup of G.

Permutation Group:
Suppose Sn is a finite set, having n elements, S = {x1, x2, ....xn}. Then

the set of all 1 − 1 mapping of S onto itself, written as A(S) = Sn.

Definition 1.84 Let S be a set and θ ∈ A(S).Given two elements a, b ∈ S
we define a ≡ θb ⇔ b = aθi for some integer i. [i can be +ve,−ve or zero]

Result 1.85 Congruence θ is an equivalence relation.
Proof: (i) ≡ θ reflexive: a = aθ0 = ae ⇒ a ≡ θa ∀a ∈ S. ∴≡ θ is reflexive.
(ii) ≡ θ is symmetric: Suppose a ≡ θb then b = aθi for some integer i ⇒
a = bθ−i ⇒ b ≡ θa. ∴≡ θ is symmetric.
(iii) ≡ θ is transitive: Suppose a ≡ θb and b ≡ θc ⇒ b = aθi and c = bθj for
some integer i and j. Now, c = b · θj = (aθi)θj = a(θi+j) ⇒ a ≡ θc,for some
integer c = i+ j. ∴≡ θ is transitive.
Hence ≡ θ is an equivalence relation.

Let S be a set and θ ∈ A(S). Given two elements a, b ∈ S we define a ≡
θb iff b = aθi. ≡ θ is an equivalence relation which induces a decomposition
of S into disjoint subsets namely the equivalence classes.
Let s ∈ S, the equivalence classes of s is called the orbit of s under θ; thus
the orbit of s under θ consists of the elements sθi, i = 0,±1,±2, ....
If S is a finite set and s ∈ S, there is a smallest positive integer l = l(s),
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depending on s such that sθl = s. The orbit of s under θ then consists
of an element {s, sθ, sθ2, sθ3, ...sθl−1}. A cycle of θ is the ordered set of
{s, sθ, sθ2, sθ3, ...sθl−1}.

Example 1.86 Let S = {1, 2, 3, 4}.

θ =

(

1 2 3 4
3 1 2 4

)

ψ =

(

1 2 3 4
1 3 2 4

)

θ · ψ =

(

1 2 3 4
3 1 2 4

)(

1 2 3 4
1 3 2 4

)

=

(

1 2 3 4
2 1 3 4

)

θ−1 =

(

1 2 3 4
2 3 1 4

)

Example 1.87 Find the orbit and cycles of the following permutations,

θ =

(

1 2 3 4 5 6
2 1 3 5 6 4

)

Solution: S = {1, 2, 3, 4, 5, 6}
Orbit of 1:
1θ0, 1θ1, 1θ2, 1θ3, ...
1θ0 = 1
1θ1 = 1 · θ = 2
1θ2 = (1θ) · θ = 2 · θ = 1
1θ3 = (1θ2) · θ = 1 · θ = 2
1θ4 = (1θ3) · θ = 2 · θ = 1
1θ5 = (1θ4) · θ = 1 · θ = 2
∴ Orbit of 1 consists of the element {1, 2}
Orbit of 2:
2θ0, 2θ1, 2θ2, ...
2θ0 = 2
2θ1 = 2 · θ = 1
2θ2 = (2 · θ) · θ = 1 · θ = 2
2θ3 = (2 · θ2) · θ = 2 · θ = 1
∴ Orbit of 2 consists of the element {1, 2}
Orbit of 3:
3θ0, 3θ1, 3θ2, ...
3θ0 = 3
3θ1 = 3 · θ = 3
3θ2 = (3θ) · θ = 3 · θ = 3
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∴ Orbit of 3 consist of the element {3}
Orbit of 4:
4θ0, 4θ1, 4θ2, ...
4θ0 = 4
4θ1 = 4 · θ = 5
4θ2 = (4θ) · θ = 5 · θ = 6
4θ3 = (4θ2) · θ = 6 · θ = 4
4θ4 = (4θ3) · θ = 4 · θ = 5
∴ Orbit of 4 consists of the element {4, 5, 6}
Orbit of 5:
5θ0, 5θ1, 5θ2, ...
5θ0 = 5
5θ1 = 5θ = 6
5θ2 = (5 · θ) · θ = 6 · θ = 4
5θ3 = (5 · θ2) · θ = 4 · θ = 5
∴ Orbit of 5 consists of the element {6, 5, 4}
Orbit of 6:
6θ0, 6θ1, 6θ2, ...
6θ0 = 6
6θ1 = 6 · θ = 4
6θ2 = (6θ) · θ = 4 · θ = 5
6θ3 = (6θ2) · θ = 5 · θ = 6
∴ Orbit of 6 consists of the element {4, 5, 6}
Cycles are the ordered set of orbits
∴ Cycles is (1 2) (3) (4 5 6)

Example 1.88 Find the orbit cycle of the following permutation

θ =

(

1 2 3 4 5 6 7 8 9
2 3 8 1 6 4 7 5 9

)

Solution: Orbit of 1: 1θ0, 1θ1, 1θ2

1θ0 = 1
1θ1 = 1θ = 2
1θ2 = (1θ)θ = 2 · θ = 3
Orbit of 1 = {1, 2, 3, 8, 5, 6, 4}
Orbit of 2 = {2, 3, 8, 5, 6, 4, 1}
Orbit of 3 = {3, 8, 5, 6, 4, 1, 2}
Orbit of 4 = {4, 1, 2, 3, 8, 5, 6}
Orbit of 5 = {5, 6, 4, 1, 2, 3, 8}
Orbit of 6 = {6, 4, 1, 2, 3, 8, 5}
Orbit of 7 = {7}
Orbit of 8 = {8, 5, 6, 4, 1, 2, 3}
Orbit of 9 = {9}
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Cycles are (1 2 3 8 5 6 4) (7) (9)
Product of all the cycles, C1, C2, C3

C =

(

1 2 3 4 5 6 7 8 9
2 3 8 1 6 4 7 5 9

)

Theorem 1.89 Every permutation is the Product of its cycles.
Proof: Let θ be a permutation on the set S. Then its cycles are of the form
(s, sθ, .....sθl−1), where l is the least positive integer such that Sθl = S, s ∈ S.
Let ψ be the product of all distinct cycles of θ.
claim that θ = ψ
By multiplication of cycles and since the cycles and since the cycle of θ are
disjoint, the image of s′ ∈ S under θ which is sθ′ is same as the image of S′

under ψ. So, θ, ψ have the same effect on every element of S. Hence, θ = ψ
∴ Every permutation is the product of disjoint cycles.

Example 1.90 Let

θ =

(

1 2 3 4 5 6 7 8 9
3 7 5 2 1 8 4 6 9

)

The cycles are of the form
θ1 = (1 θ θ2) = (1 3 5); θ2 = (2 2θ 2θ2) = (2 7 4); θ3 = (6 8); θ4 = (9)
ψ = θ1 · θ2 · θ3 · θ4 = (1 3 5) (2 7 4) (6 8) (9)

Lemma 1.91 Every permutation is the product of 2 cycles.
Proof: Let θ be the permutation on S = {a1, a2, ..., an}. By above lemma,
θ can be written as the product of its cycles. Let (a1, a2, ..., am) be any
cycle θ of length m(m < n). This can be decomposed as (a1, a2, ..., am) =
(a1, a2) (a1, a3)...(a1, am). ∴ An m-cycle can be written as the product of
2-cycles. Any permutation can be expressed as a product of transpositions.
Since every permutation is the product of its disjoint cycles and every cycle
is a product of 2-cycles, it follows that every permutation is a product of
2-cycles.

Note 1.92 We shall refer to 2-cycles as transpositions.

Definition 1.93 A permutation θ ∈ Sn is said to be an even permutation
if it can be represented as a product of an even number of transpositions and
is said to be an odd permutation if it can be represented as a product of an
odd number of transpositions.
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Example 1.94
(

1 2 3 4
2 1 4 3

)

= (1 2) (3 4) = even permutation

(

1 2 3 4 5
2 1 3 5 4

)

= (1 2) (3) (4 5) = odd permutation

Result 1.95 A permutation can be written either as a product of an even
number of transpositions or as a product of an odd number of transpositions
and not both.
Proof: Let θ ∈ Sn
Suppose θ can be written as a product of X transpositions in one way and
can be written as a product of Y transpositions in another way. Consider a
polynomial in variables x1, x2, ..., xn which are the elements of S.

P (x1, x2, ..., xn) =
∏

i<j

(xi − xj).

Let θ ∈ Sn be a permutation on n-symbols 1, 2, ..., n. Let θ be act on
P (x1, x2, ..., xn) by

θ : P (x1, x2, ..., xn) =
∏

i<j

(xi − xj) →
∏

i<j

(xθ(i) − xθ(j)).

It is clear that θ : P (x1, x2, ..., xn) → ±P (x1, x2, ..., xn). For example,
consider θ = (1 3 4) (2 5) ∈ S5. Then P (x1, x2, ..., x5) = (x1 − x2)(x1 −
x3)(x1 −x4)(x1 −x5)(x2 −x3)(x2 −x4)(x2 −x5)(x3 −x4)(x3 −x5)(x4 −x5);
θ(P (x1, x2, ..., x5)) = (x3 − x5)(x3 − x4)(x3 − x1)(x3 − x2)(x5 − x4)(x5 −
x1)(x5 −x2)(x4 −x1)(x4 −x2)(x1 −x2) = −[(x1 −x2)(x1 −x3)(x1 −x4)(x1 −
x5)(x2−x3)(x2−x4)(x2−x5)(x3−x4)(x3−x5)(x4−x5)] = −P (x1, x2, ..., x5).
Suppose θ = (1, 2) ∈ S2; P (x1, x2) = (x1 − x2); θ(P (x1, x2)) = (x2 − x1) =
−(x1 −x2) = −P (x1, x2). (i.e)The effect of a transposition on P is to change
the sign of P . Now the operation by a transposition (rs) where r < s has
the following effects on P .
(i) Any factor of P which contains neither the suffix r nor s remains un-
changed
(ii) The single factor (xr − xs) changes its sign by replacing r by s and s by
r
(iii) The remaining factor which contain either the suffix r (or) s but not
both can be grouped into the following 3 types of products.
(a) [(x1 − xr)(x1 − xs)][(x2 − xr)(x2 − xs)]...[(xr−1 − xr)(xr−1 − xs)]
(b) [(xr −xr+1)(xr+1 −xs)][(xr −xr+2)(xr+2 −xs)]...[(xr −xs−1)(xs−1 −xs)]
(c) [(xr − xs+1)(xs − xs+1)][(xr − xs+2)(xs − xs+2)]...[(xr − xn)(xs − xn)]
On replacing r by s and s by r, the signs of all types of products do not
change. Hence effect of the transposition (rs) on P is to change the sign of
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P . (i.e) P operated upon by a transposition becomes −P . If the permuta-
tion θ can be expressed as a product of x transposition then,
θP = [(−1)(−1)...(−1)]P (x times)
= (−1)x · P..........(1)
Also if θ can be expressed as a product of y transpositions then,
θP = [(−1)(−1)...(−1)]P (y times)
= (−1)y · P..........(2)
from (1) and (2), (−1)x · P = (−1)y · P ⇒ (−1)x = (−1)y

⇒ x and y are both odd (or) x and y are both even.

Lemma 1.96 Sn has a normal subset of index 2, the alternating group An
consisting of all even permutations.
Proof: We know that Sn is group. An is the subset of Sn consisting of all
even permutations.
An is a subgroup of Sn:
Let θ1, θ2 ∈ An. ⇒ θ1 and θ2 are even permutations. ⇒ θ1 · θ2 is an even
permutation. ⇒ θ1 · θ2 ∈ An [∵ product of any two even permutation is
even]. ∴ An is a subgroup of Sn.
Claim that An is normal in Sn:
Let W = {1,−1} is a group under multiplication. Define ψ : Sn → W by

ψ(s) =

{

1 if s is an even permutation

−1 if s is an odd permutation

Claim that ψ is a homomorphism onto W . Let s, t ∈ Sn.
Case(i) If s, t are even, then st is even. ∴ ψ(st) = 1 = 1 · 1 = ψ(s) · ψ(t)
Case(ii) If s, t are odd, then st is even. ∴ ψ(st) = 1 = −1 × −1 = ψ(s) ·ψ(t)
Case(iii) If s is odd and t is even, then st is odd. ∴ ψ(st) = −1 = −1 × 1 =
ψ(s) · ψ(t)
Case(iv) Le t s is even and t is odd. (i.e) ψ(s) = 1 and ψ(t) = −1 ⇒ st is
odd. ∴ ψ(st) = −1 = 1×−1 = ψ(s) ·ψ(t) ⇒ ψ is a homomorphism. Clearly
ψ is onto.
Now, to prove An is normal in Sn. kernal ψ = {s ∈ Sn|ψ(s) = identity in
W} = {s ∈ Sn|ψ(s) = 1} = An. Thus ψ is a homomorphism of Sn onto
W with kernal An. ∴ By Lemma 1.63, An = kernal ψ is normal in Sn.
By Theorem 1.71 Sn/An ∼= W . ⇒ O(W ) = O( Sn

An
) ⇒ O( Sn

An
) = 2 [∵

O(G/H) = O(G)
O(H) = iG(H)] ⇒ isn(An) = 2. Also, O(An) = O(Sn)

2 = n!
2 .



22 2. UNIT II

2. UNIT II

Another Counting Principle

Definition 2.1 If a, b ∈ G, then b is said to be a conjugate of a in G if there
exists an element c ∈ G such that b = c−1ac. We shall write this conjugate
relation as a ∼ b. (i.e.) a ∼ b ⇒ b is conjugate to a ⇒ b = c−1ac, c ∈ G.

Lemma 2.2 Conjugation is an equivalence relation on G.
Proof: (i) ∼ is reflexive:
Let a ∈ G, then a = a−1ae, a ∈ G ⇒ a ∼ a ∀a ∈ G. ∴∼ is reflexive.
(ii) ∼ is symmetric:
Suppose, a ∼ b ⇒ b = c−1ac, c ∈ G. ⇒ a = c b c−1 = (c−1)−1b(c−1) =
x−1bx, x = c−1 ∈ G ⇒ b ∼ a. ∼ is symmetric.
(iii)∼ is transitive:
Suppose a ∼ b and b ∼ c. Then a ∼ b ⇒ b = x−1ax, x ∈ G; b ∼ c ⇒
c = y−1by, y ∈ G. Now, c = y−1by = y−1(x−1ax)y = (y−1x−1)a(xy) =
(xy)−1a(xy) = z−1az, z = xy ∈ G ⇒ a ∼ c. ∴∼ is transitive.
Hence, ∼ is an equivalence relation.

Definition 2.3 For any a ∈ G, let C(a) = {x ∈ G|x ∼ a}, C(a) is the
equivalence class a in G, under the relation ∼. It is usually called the
conjugate class of a ∈ G

Remark 2.4 C(a) = {x ∈ G|x ∼ a} = {x ∈ G|x ∼ a} = {x ∈ G|x =
y−1ay, y ∈ G} = {y−1ay|y ∈ G}. If consists of the set of all distinct el-
ements of the form x−1ax as x ranges over G. Suppose the number of
elements in C(a) is denoted by Ca. Since the union of all distinct conjugate
classes is G,

G = C(a1) ∪ C(a2) ∪ ... ∪ C(an)

O(G) = Ca1 + Ca2 + ...+ Can =
∑

ai∈G

Cai

Where the summation runs over each element a in each conjugate classes.

Definition 2.5 If a ∈ G,N(a), normaliser of a is defined as {x ∈ G|ax =
xa}

Example 2.6 (i) G = {1,−1, i,−i}. When a = 1, N(a) = N(1) = {1,−1,
i,−i} = G; When a = −1, N(−1) = G.
(ii) G = {Z5,⊕5}. a = [2], N(a) = N([2]) = {[0], [1], [2], [3], [4]}
(iii) G = S3 = {e, φ, ψ, φ · ψ,ψ · φ, ψ2}. N(φ) = {e, φ}; N(ψ) = {e, ψ, ψ2};
N(ψ2) = {e, ψ2, ψ}.
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Lemma 2.7 N(a) is a subgroup of G.
Proof: Let x, y ∈ N(a) ⇒ ax = xa and ay = ya ..........(1)
Now, a(xy) = (ax)y = (xa)y [by(1)] = x(ay) = x(ya) [by(1)] = (xy)a ⇒
xy ∈ N(a) ∀x, y ∈ N(a) ..........(2)
Suppose x ∈ N(a) ⇒ ax = xa ⇒ x−1a = ax−1 [By premultiply and post
multiply by x−1] ⇒ x−1 ∈ N(a) ..........(3)
By (2) and (3), N(a) is a subgroup of G.

Calculation for C(a):
Let G = S3 = {e, φ, ψ, φ · ψ,ψ · φ, ψ2}. C(φ) = {x−1φx|x ∈ S3} =
{e−1φe, φ−1φφ, ψ−1φψ, (φ · ψ)−1φ(φ · ψ), (ψ · φ)−1φ(ψ · φ), (ψ2)−1φψ2}
C(1, 2) = {e−1(1, 2)e, (1, 2)−1(1, 2)(1, 2), ψ−1(1, 2)ψ, (φ ·ψ)−1(1, 2)(φ ·ψ), (ψ ·
φ)−1(1, 2)(ψ · φ), (ψ2)−1(1, 2)ψ2} = {(1 2 3) (1 2) (1 2 3), (1 2) (1 2) (1 2),
(1 3 2) (1 2) (1 3 2), (1 3) (1 2) (1 3), (2 3) (1 2) (2 3), (2 3 1) (1 2) (1 3 2)} =
{(1 2), (1 2), (2 3)}. ∴ C(φ) = {φ, φ · ψ,ψ · φ}

C(1,2) = O(C(1, 2)) = 3. O(G)
O(N(1,2)) = 6

3 = 3. ∴ C(1,2) = O(S3)
O(N(1,2)) .

Theorem 2.8 If G is a finite group, then Ca = O(G)
O(N(a)) ; In other wards,

the number of elements conjugate to a in G is the index of N(a) in G.
Proof: We shall show that two elements in the same right coset of N(a) in
G, yields the same conjugate of a in G, where as two elements in different
cosets of N(a) in G gives rise to different conjugate of a in G. In this way
we shall have a 1 − 1 correspondence between conjugate of a in G and the
right cosets of N(a) in G. Suppose x, y ∈ G are in the same right cosets of
N(a) in G. Then y = nx where n ∈ N(a), [∵ y ∈ N(a) ·x, y = nx] ⇒ y−1 =
(nx)−1 = x−1n−1; y−1ay = x−1n−1ay = x−1n−1anx = x−1(n−1an)x =
x−1ax = x−1ax. Hence, x and y result in the same conjugate of a in G. In
other wards if x and y are in different right cosets of N(a) in G.
Claim that x−1ax 6= y−1ay. Suppose not x−1ax = y−1ay. Premultiply by
y and post multiply by x−1, then yx−1axx−1 = y(y−1ay)x−1 ⇒ yx−1a =
ayx−1 ⇒ (yx−1)a = a(yx−1) ⇒ yx−1 ∈ N(a) [∵ ab−1 ∈ H ⇔ Ha = Hb] ⇒
N(a) · y = N(a) · x ⇒ x and y to be in the same right cosets of N(a)
in G ⇒⇐ to the fact that x and y are in different right coset of N(a) in
G. ∴ x−1ax 6= y−1ay. Hence x and y yield the different conjugate of a in G
if they are in different right cosets of N(a) in G. ∴ The number of elements
conjugate to a in G = number of distinct right cosets of N(a) in G. (i.e.)
the number of elements conjugate to a in G = the index of normaliser of a
in G. (i.e.) Ca = O(G)

O(N(a)) . Hence, the theorem.

Corollary 2.9

O(G) =
∑ O(G)

O(N(a))
, ∀a ∈ G
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Proof: By previous theorem,

O(G) =
∑

a∈G

Ca =
∑

a∈G

O(G)

O(N(a))

Where the sum runs over one element a from in each conjugate class. This
is known as class equation of G.

Example 2.10 State and Prove class equation of a group G.
Proof: The proof is obvious from above theorem and its corollary.

Definition 2.11 Centre of a group G: The centre Z (or) Z(G) of a
group G is defined by Z = {z ∈ G|xz = zx ∀x ∈ G}.

Example 2.12 (i) G = {1,−1, i,−i} and Z = G.
(ii) G = S3 and Z(G) = Z(S3) = {e}.

Lemma 2.13 a ∈ Z(G) ⇔ N(a) = G; if G is finite, a ∈ Z(G) ⇔
O(N(a)) = O(G)
Proof: Suppose a ∈ Z(G) ⇒ ax = xa ∀x ∈ G ⇒ x ∈ N(a) ∀x ∈
G ⇒ G ⊆ N(a). But N(a) ⊆ G. ∴ N(a) = G. Conversely suppose
N(a) = G ⇒ x ∈ N(a) ∀x ∈ G ⇒ ax = xa ∀x ∈ G ⇒ a ∈ Z(G). If
G is finite, and a ∈ Z ⇔ N(a) = G ⇔ O(N(a)) = O(G).

Theorem 2.14 Application-1: If O(G) = pn, where p is a prime number
then centre of G,Z(G) 6= {e}. [Z is non-trival]
Proof: If a ∈ G, Since N(a) is a subgroup of G by Lagrange’s theorem
O(N(a))

O(G) = pn ⇒ O(N(a))/pn. Let O(N(a))/pnα, nα ≤ n. a ∈ Z(G) ⇔

O(G) = O(N(a)) ⇔ pn = pnα ⇔ n = nα. By class equation, O(G) =
∑ O(G)

O(N(a)) , where the sum runs over the set of elements a ∈ G. Using one a,
from each conjugate class.

O(G) =
∑

a∈Z(G)

O(G)

O(N(a))
+

∑

a/∈Z(G)

O(G)

O(N(a))

=
∑

O(N(a))=O(G)

O(G)

O(N(a))
+

∑

O(N(a)) 6=O(G)

O(G)

O(N(a))

=
∑

a∈Z

O(G)

O(G)
+

∑

O(N(a)) 6=O(G)

O(G)

O(N(a))

=
∑

a∈G

1 +
∑

O(N(a)) 6=O(G)

O(G)

O(N(a))

= O(Z) +
∑

O(N(a)) 6=O(G)

O(G)

O(N(a))
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Let O(Z) = Z.

O(G) = Z +
∑

n6=nα

O(G)

O(N(a))

= Z +
∑

n6=nα

pn

pnα

= Z +
∑

n6=nα

pn−nα

∴ pn = Z +
∑

nα<n

pk, k = n− nα > 0..........(1)

Since p/pn and p/
∑

nα<n

pk,

from (1) p/(pn −
∑

nα<n

pk) ⇒ p/Z ⇒ p/O(Z)

∵ e ∈ Z,O(Z) 6= op/O(Z), O(Z) 6= 0 and p is prime. ∴ O(Z) > 1. ∴

Z(G) 6= {e}. Hence, Z is non-trivial and the theorem.

Corollary 2.15 If O(G) = p2 where p is a prime number, then G is abelian.
Proof: Suppose O(G) = p2, to prove G is abelian, it is enough to prove that
Z(G) = G. Since O(G) = p2, by previous theorem Z(G) 6= {e}. Since Z(G)

is a subgroup of G, by Lagrange’s theorem, O(Z(G))
O(G) = p2 ⇒ O(Z(G))/p2 ⇒

O(Z(G)) = 1 (or) p (or) p2.
Case(i): O(Z(G)) 6= 1[∵ Z(G) is non-trival].
Case(ii): O(Z(G)) = p2 = O(G) ⇒ O(Z(G)) = O(G) ⇒ Z(G) = G ⇒ G is
abelian.
Case(iii) Suppose, O(Z(G)) = p. Claim that there is an element a ∈ G such
that a /∈ Z. Suppose not,(i.e.) if a ∈ Z ⇒ O(N(a)) = O(G) (by Lemma
2.13). By class equation,

O(G) =
∑

a∈Z

O(G)

O(N(a))
=

∑

O(N(a))=O(G)

O(G)

O(N(a))
=

∑

a∈Z

1

∴ O(G) = O(Z) ⇒ O(G) = p ⇒⇐ to the fact O(G) = p2. Hence the claim,
there is an element a ∈ G such that a /∈ Z. Consider the subgroup N(a)
in G, then Z(G) ⊂ N(a) ⊂ G [∵ a ∈ N(a) and a /∈ Z]. ∴ O(N(a)) >
O(Z(G)) = p ..........(2)

By Lagrange’s theorem O(N(a))
O(G) = p2 ⇒ O(N(a))/p2..........(3)

⇒ O(N(a)) = p2 [by (2) and (3)] ⇒ O(N(a)) = p2 = O(G) ⇒ O(N(a)) =
O(G) ⇒ N(a) = G ⇒ a ∈ Z ⇒⇐ to a /∈ Z ∴ O(Z(G)) 6= p. ∴ The only
possibility of O(Z(G)) = p2 = O(G) ⇒ Z(G) = G. Hence, G is abelian.
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Theorem 2.16 Application-2: CAUCHY’S THEOREM If p is a prime
number and p/O(G), then G has an element of order p.
Proof: We have to find an element a 6= e ∈ G such that it satisfier ap = e.
We prove this theorem by induction on O(G). The result is clearly true for
a group of order 1. We assume that the theorem is true, for all groups T
such that O(T ) < O(G). Now, we have to prove the theorem for G.
Case(i): Suppose W be any subgroup of G,W 6= G. such that p/O(W ) [p
divides the order of any non-trivial subgroup of G]. ∴ O(W ) < O(G).
By induction hypothesis, the theorem is true for W , then there exists an
element a ∈ W,a 6= e such that ap = e ⇒ a 6= e, a ∈ G, such that
ap = e (∵ a ∈ W ⊂ G). ∴ G has an element of order p.
Case(ii): Suppose we assume that p does not divide order of any proper
subgroup of G. In particular, if a /∈ Z then N(a) 6= G (by Lemma 2.13).
(i.e.) N(a) is a proper subgroup of G if a /∈ Z(a). By assumption p does
not divide O(N(a)). Consider the class equation of G,

O(G) =
∑ O(G)

O(N(a))

=
∑

N(a)=G

O(G)

O(N(a))
+

∑

N(a) 6=G

O(G)

O(N(a))

=
∑

a∈G

O(G)

O(N(a))
+

∑

N(a) 6=Z(G)

O(G)

O(N(a))

=
∑

a∈G

1 +
∑

N(a) 6=Z(G)

O(G)

O(N(a))

= O(Z(G)) +
∑

N(a) 6=G

O(G)

O(N(a))
..........(1)

Since p/O(G) and p does not divide O(N(a)), p/ O(G)
O(N(a))

⇒
∑

N(a) 6=G

O(G)

O(N(a))

Thus p/O(G) and
∑

N(a) 6=G

O(G)

O(N(a))

⇒ p/O(Z(G)) [from(1)], where Z(G) is a proper subgroup of G. But we
have assumed that p does not divide any proper subgroup of G. ∴ Z(G)
cannot be a proper subgroup of G. ∴ Z(G) = G ⇒ G is abelian. Thus
p/O(G) and G is abelian. ∴ By Cauchy’s theorem for abelian group, there
exists a 6= e, a ∈ G such that ap = e
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Theorem 2.17 Sylow’s Theorem for arbitrary groups: If pm/O(G),
pm+1 does not divides O(G), then G has a subgroup of order pm, where p is
a prime number.
Proof: We prove this theorem by induction on O(G). If O(G) = 1, the
theorem is vacuously true. If O(G) = 2, the theorem only relevant prime
number is 2. 21/O(G), 22 does not divides O(G). Certainly G has a sub-
group of order 2 namely itself. The result is true if O(G) = 2. Suppose,
we assume that the theorem is true for all groups of order less than O(G).
We want to show that the result is true for group G. Suppose assume that
pm/O(G), pm+1 does not divides O(G), where p is a prime number, m ≥ 1.
Case(i): Suppose there exists a proper subgroup H(G) such that pm/O(H).
∵ H is a proper subgroup of G,O(H) < O(G). ∴ By induction hypothesis,
H would have a subgroup T of order pm. Since T is a subgroup of H and
H is a subgroup of G, T is a subgroup of G of order pm.
Case(ii): Suppose we assume that pm does not divides O(H) for any sub-
group H(G) and H 6= G. [(i.e.) pm does not divide any proper subgroup
of O(G)]. If a ∈ G, then N(a) = {x ∈ G|ax = xa} is a subgroup of G. If
a /∈ Z(G) then N(a) 6= G. (i.e.) N(a) is a proper subgroup of G. ∴ By
our assumption pm does not divides O(N(a)). Consider the class equation,
O(G) =

∑
Ca, where the sum runs over one element a for each conjugate

class.

⇒ O(G) =
∑ O(G)

O(N(a))

=
∑

a∈Z

O(G)

O(N(a))
+

∑

a/∈Z

O(G)

O(N(a))

=
∑

a∈Z

O(G)

O(G)
+

∑

a/∈Z

O(G)

O(N(a))

[∵ if a ∈ Z ⇒ O(N(a)) = O(G)]

=
∑

a∈Z

1 +
∑

a/∈Z

O(G)

O(N(a))

⇒ O(G) = O(Z) +
∑

a/∈Z

O(G)

O(N(a))
..........(1)

Since pm/O(G) and pm does not divides O(N(a)) we have pm/ O(G)
O(N(a))

⇒ pm/
∑

a/∈Z

O(G)

O(N(a))

⇒ pm/(O(G) −
∑

a/∈Z

O(G)

O(N(a))
)

⇒ pm/O(Z).
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Since pm/O(Z) by Cauchy’s theorem, Z has an element b 6= e such that
bp = e. B is a subgroup of G of order p. ∴ B is normal in G [∵ Every
subgroup of an abelian group is normal]. We can form he quotient group

Ḡ, Ḡ = G/B = {Bx|x ∈ G}. Now, O(Ḡ) = O(G/B) = O(G)
O(B) = O(G)

p <

O(G). Also, pm−1/O(G/B) = O(Ḡ) [∵ pm/O(G) ⇒ O(G) = tpm,some

integer t]. Now O(Ḡ) = O(G)
O(B) = tpm

p = tpm−1 ⇒ pm−1/O(Ḡ). Also, pm does

not divides O(Ḡ) and O(Ḡ) < O(G) [pm−1/O(Ḡ) and pm does not divides
O(Ḡ)]. ∴ By induction hypothesis (Ḡ) has a subgroup P̄ of order pm−1. Let
P = {x ∈ G|xB ∈ P̄}, then P is a subgroup of G by fundamental theorem of

homomorphism, P̄ ∼= P/B. ∴ pm−1 = O(P̄ ) = O(P )
O(B) = O(P )

p ⇒ O(P ) = pm.
Thus P is a required p-Sylow subgroup of G of order pm. Hence the theorem.

Direct Product:

Definition 2.18 External Direct Product: Let A and B be any two
groups.Consider the cartesian product of A and B,G = A×B = {(a, b)|a ∈
A, b ∈ B}. Let x = (a1, b1)/a1 ∈ A, b1 ∈ B; y = (a2, b2)/a2 ∈ A, b2 ∈ B.
Define x · y = (a1, b1) · (a2, b2) = (a1a2, b1b2).

Result 2.19 Under this operation (·), G is a group and this group G is
called external direct product of A and B.
Proof: (i) (·) is closed: Let x = (a1, b1) ∈ G, y = (a2, b2) ∈ G. Now,
x · y = (a1, b1) · (a2, b2) = (a1a2, b1b2) ∈ G (∵ a1a2 ∈ A, b1b2 ∈ B). ∴ (·) is
closed
(ii) (·) is associative: Let x = (a1, b1) ∈ G, y = (a2, b2) ∈ G and z =
(a3, b3) ∈ G. Then x · (y · z) = (a1, b1) · [(a2, b2) · (a3, b3)] = (a1, b1) ·
[(a2b2), (a3b3)] = (a1·(a2a3), b1·(b2b3)) = ((a1a2)·a3, (b1b2)·b3) = (a1a2, b1(b2)·
(a3, b3)) = (x · y) · z ∀x, y, z ∈ G. ∴ (·) is associative.
(iii) Existence of identity: Consider e = (e1, e2), where e1 is the identity ele-
ment in A and e2 is the identity element in B. Now, x·e = (a1, b1)·(e1, e2) =
(a1 · e1, b1 · e2) = (a1, b1) = x and e · x = x ∀x ∈ G. ∴ e = (e1, e2) act as a
identity element of G.
(iv)Existence of inverse: let x = (a1, b1) ∈ G; x−1 = (a−1

1 , b−1
1 ) ∈ G, where

a−1
1 ∈ A, b−1

1 ∈ B. Now, x · x−1 = (a1, b1) · (a−1
1 , b−1

1 ) = (a1a
−1
1 , b1b

−1
1 ) =

(e1, e2) ∈ G, where e1 is the identity element in A and e2 is the identity
element in B. ∴ x · x−1 = e. ∴ (a−1

1 , b−1
1 ) acts as the inverse of G.

∴ G is a group.

Definition 2.20 Let G1, G2, G3...Gn be the n groups. Let G = G1 × G2 ×
G3 × ... × Gn = {(g1, g2...gn)/g1 ∈ G1, g2 ∈ G2...gn ∈ Gn)}. Let x =
(g1, g2...gn) ∈ G; y = (g′

1, g
′
2...g

′
n) ∈ G. Define x · y = (g1, g2...gn) ·

(g′
1, g

′
2...g

′
n) = (g1g

′
1...gng

′
n). Under this operation, G is a group and we

called G as an external direct product of the group G1, G2, G3...Gn
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Internal Direct Product: Let A and B be any two groups. Consider
G = A × B and Ā = {(a, f) ∈ G|a ∈ A, f is the identity element in B};
B̄ = {(b, f) ∈ G|a ∈ B, e is the identity element in A}. Clearly Ā and B̄
are the subgroups of G. Define a map φ : A → Ā by φ(a) = (a, f), a ∈ A.
Suppose φ(a) = φ(a) ⇒ (a, f) = (b, f) ⇒ a = b. ∴ φ is 1 − 1. φ(ab) =
(ab, f) = (a, f) · (b, f) = φ(a) ·φ(b). ∴ φ is a homomorphism. Let (a, f) ∈ Ā
then there exists an element a ∈ A such that φ(a) = (a, f). ∴ φ is onto. ∴ φ
is an isomorphism of A onto Ā. (i.e.) A ∼= Ā. Similarly Define ψ : B → B̄
by ψ(b) = (e, b). Then ψ is a homomorphism of B onto B̄. ∴ B ∼= B̄. To
prove: Ā and B̄ are normal subgroups of G. Let x = (a1, b1) ∈ G where
a1 ∈ A, b1 ∈ B; x−1 = (a−1

1 , b−1
1 ) ∈ G where a−1

1 ∈ A, b−1
1 ∈ B. Let

n = (a, f) ∈ Ā. Now,

xnx−1 = (a1, b1)(a, f)(a−1
1 , b−1

1 )

= (a1a, b1f)(a−1
1 , b−1

1 )

= (a1aa
−1
1 , b1fb

−1
1 ))

= (a1aa
−1
1 , b1b

−1
1 f)

= (a1aa
−1
1 , f) ∈ Ā [∵ a1aa

−1
1 ∈ A and f is identity in B]

⇒ xnx−1 ∈ Ā,∀x ∈ G,n ∈ Ā.

∴ Ā is a normal subgroup of G. Similarly we can prove that B̄ is the normal
subgroup of G. Claim that G = ĀB̄ and for every g ∈ G, has unique
decomposition in the form g = āb̄; ā ∈ Ā, b̄ ∈ B̄. Let g ∈ G = A × B =
{(a, b)|a ∈ A, b ∈ B}; g = (a, b) = (a, f)(e, f) ⇒ g = āb̄, ā = (a, f) ∈ Ā; b̄ =
(e, b) ∈ B̄.
Uniqueness: Let g ∈ G can be written as g = x̄ȳ, x̄ ∈ Ā, ȳ ∈ B̄, x̄ =
(x, f), x ∈ A, f is the identity element in B and ȳ = (e, y), y ∈ B, e is
the identity element in A. g = x̄ȳ = (x, f)(e, y) = (x, y), but g = (a, b).
∴ (a, b) = (x, y) ⇒ a = x and b = y. ∴ x̄ = (x, f) = (a, f) = ā and ȳ =
(e, y) = (e, b) = b̄. ∴ g ∈ G can be uniquely written as g = ā · b̄, ā ∈ Ā, b̄ ∈ B̄.
Since g ∈ G is arbitrary chosen G = ĀB̄ is called the internal direct product
of the group Ā and B̄.

Definition 2.21 Let G be a group and Ā, B̄ be a normal subgroup of G and
Ā ∼= A and B̄ ∼= B in such a way g ∈ G has a unique representation of the
form g = āb̄, ā ∈ Ā, b̄ ∈ B̄. Then G is called the internal direct product of Ā
and B̄

Definition 2.22 Let G be a group and N1, N2, ..., Nn be normal subgroups
of G such that
(i) G = N1N2 · · ·Nn

(ii) Given g ∈ G then g = m1m2 · · ·mn, mi ∈ Ni is a unique representation.
Then G is called the internal direct product of the groups N1, N2, ..., Nn.
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Lemma 2.23 Suppose G is the internal product of N1, N2, ..., Nn. Then for
i 6= j,Ni ∩Nj = {e} and if a ∈ Ni, b ∈ Nj then ab = ba
Proof: Let x ∈ Ni ∩ Nj ⇒ x ∈ Ni and x ∈ Nj . When x ∈ Ni, x =
e1e2 · · · ei−1xei+1 · · · en ..........(1)
Here e1 = e2 = ... = ei−1 = ei+1 = ... = en = e ∈ Ni where ei ∈ Ni, i =
1, 2, ..., n and i 6= j. Similarly x ∈ Nj then, x = e1e2 · · · ei−1eiei+1 · · ·
ej−1xej+1 · · · en ..........(2)
Here e1 = e2 = ... = ei−1 = ei+1 = ... = ej−1 = ej+1 = ... = en = e.
Since any element in G, in particular x has unique representation of the
form m1m2 · · ·mn where mi ∈ Ni. ∴ The two composition [i.e.(1) and (2)]
in this form of x must coincide and the entry from Ni in each must be equal.
e1e2 ···ei−1xei+1 ···en = e1e2 ···ei−1eiei+1 ···ej−1xej+1 ···en for each ei = e ∀i.
∴ x = e. ∴ Ni ∩ Nj = {e} ∀i 6= j. To prove ab = ba, ∀a ∈ Ni, b ∈ Nj , it
is enough to prove that aba−1b−1 ∈ Ni ∩ Nj . Let a ∈ Ni ⇒ a−1 ∈ Ni and
b ∈ Nj ⇒ b ∈ G and b−1 ∈ G. (i.e.) b ∈ G, a−1 ∈ Ni. Since Ni is normal in
G, ba−1b−1 ∈ Ni and a ∈ Ni ⇒ aba−1b−1 ∈ Ni ..........(1)
Since b ∈ Nj , b

−1 ∈ Nj . a ∈ Ni ⇒ a ∈ G, a−1 ∈ G. (i.e.) a ∈ G, b−1 ∈ Nj .
Since Nj is normal in G, ab−1a−1 ∈ Nj and b−1 ∈ Nj ⇒ aba−1b−1 ∈ Nj

..........(2)
From (1) and (2), aba−1b−1 ∈ Ni ∩ Nj = {e} ⇒ aba−1b−1 = e ⇒ ab =
ba ∀a ∈ Ni, b ∈ Nj

Remark 2.24 Converse of the above lemma is not true.

Theorem 2.25 Let G be a group and suppose that G is the internal product
of N1, N2, ....Nn. Let T = N1×N2×···×Nn. Then G and T are isomorphic.
Proof: Suppose G is the internal direct product of N1, N2, ..., Nn. Let
x ∈ G. Then x can be unique expressed as x = a1a2 · · · an, ai ∈ Ni.
Define a map ψ : T → G by ψ(a1, a2, ..., an) = a1a2 · · · an where each
ai ∈ Ni, i = 1, 2, ..., n. Let x = (a1, a2, ..., an), y = (b1, b2, ..., bn). Suppose
ψ(x) = ψ(y) ⇒ (a1 · a2 · · · an), y = (b1 · b2 · · · bn) ⇒ a1 = b1, a2 = b2, ..., an =
bn (By the uniqueness of the internal direct products) ⇒ (a1, a2, ..., an) =
(b1, b2, ..., bn) ⇒ x = y. ∴ ψ is 1−1. Since G is the internal direct products of
N1, N2, ..., Nn if x ∈ G, then x = (a1, a2, ..., an) for ai ∈ Ni, a2 ∈ N2, ..., an ∈
Nn. But then ψ(a1, a2, ..., an) = a1 · a2 · · · an = x. ∴ ψ is onto. Now,
ψ(x y) = ψ((a1, a2, ..., an) (b1, b2, ..., bn)) = ψ(a1b1, a2b2, ..., anbn) = a1b1 ·
a2b2 · · · anbn = a1 · a2 · · · an · b1 · b2 · · · bn [By lemma 2.23 ajbj = bjai for i 6=
ja1b1·a2b2···anbn = a1·a2···an·b1·b2···bn] = ψ(a1, a2, ..., an)ψ(b1, b2, ..., bn) =
ψ(x) · ψ(y). ∴ ψ is a homomorphism. ∴ ψ is an isomorphism. ∴ G ∼= T .
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3. UNIT III

Rings

Definition 3.1 Associative ring: A non-empty set R is said to be an
associative ring, If in R, there are defined two operations, denoted by + and
· respectively, such that ∀a, b, c ∈ R

1. a + b ∈ R

2. a + b = b + a

3. a + (b + c) = (a + b) + c

4. There is an element 0 in R ∋: a + 0 = a∀a ∈ R

5. There is an element −a in R ∋: a + (−a) = 0

6. a · b ∈ R

7. a · (b · c) = (a · b) · c

8. a · (b + c) = a · b + a · c

9. (b + c) · a = b · a + c · a

Example 3.2 R is the set of all integers, positive, negative, zero; (+) is
the usual addition and (·) is the usual multiplication of integers (R, +, ·)is a
ring.

Definition 3.3 If there is an element 1 ∈ R ∋: a · 1 = 1 · a = a, ∀a ∈ R
then we say that R is a ring with unit element. If a · b = b · a ∀a, b ∈ R then
we call R is a commutative ring.

Example 3.4 (J, +, ·) is a commutative ring with unit element

Example 3.5 (2J, +, ·) is a commutative ring but it has no unit element.
(2Z, ⊕, ⊙) is a commutative ring with unit element

Definition 3.6 A commutative ring R with unit element in which every
non-zero elements has a multiplicative inverse is called a field.

Example 3.7 (J7, ⊕, ⊙) is a field and it is finite hence (J7, ⊕, ⊙) is a finite
field. (J6, ⊕, ⊙) is a ring. Here 2̄ · 3̄ = 0, yet 2̄ 6= 0 and 3̄ 6= 0. Thus it is
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possible in a ring R, that a · b with neither a = 0 nor b = 0. This cannot
happen in a field. This is an example for a ring R which is not a field. Let

R ={α11e11 + α12e12 + α21e21 + α22e22 =

2∑

i,j=1

αijeij where αij are rational numbers (i.e.) αij ∈ Q}.

X = Y =
2∑

i,j=1

αijeij =
2∑

i,j=1

βijeij ⇔ αij = βij ∀i, j = 1, 2.

X + Y =
2∑

i,j=1

αijeij +
2∑

i,j=1

βijeij =
2∑

i,j=1

(αij + βij)eij

X · Y = (
2∑

i,j=1

αijeij)(
2∑

i,j=1

βijeij) =
2∑

i,j=1

γijeij

where γij =
2∑

i,j=1

αirβrj = αi1β1j + αi2β2j and eij · eke = 0 for j 6= k

eij · eke = eie for j = k.

a = e11 − e21 + e22 = 1 · e11 + 0 · e12 + (−1)e21 + 1 · e22

b = e22 + 3e12 = 0 · e11 + 3 · e12 + 0 · e21 + 1 · e22

a · b = (e11 + 0 · e12 + (−1)e21 + e22)(0 · e11 + 3 · e12 + 0 · e21 + 1 · e22)

= 0 + 3 · e12 + 0 + 0 + 0 + 0 + 0 + 0 + (−3)e22 + 0 + 0 + 0 + 0 + 0 + e22

= 3 · e12 − 3 · e22 + e22 = 3 · e12 − 2e22

∴ R is a ring. It is called a ring of 2 × 2 rational matrices.

Example 3.8 C = α + iβ, α, β ∈ R. (C, +, ·) is a field.

Example 3.9 Let Q = {α0 + α1
~i + α2

~j + α3
~k/α0, α1, α2α3 ∈ R} and X =

α0 + α1
~i + α2

~j + α3
~k; Y = β0 + β1

~i + β2
~j + β3

~k. X = Y ⇔ αi = βi ∀i =
0, 1, 2, 3. Define

X + Y = (α0 + α1
~i + α2

~j + α3
~k) + (β0 + β1

~i + β2
~j + β3

~k)

= (α0 + β0) + (α1 + β1)~i + (α2 + β2)~j + (α3 + β3)~k

X · Y = (α0 + α1
~i + α2

~j + α3
~k)(β0 + β1

~i + β2
~j + β3

~k)

= α0β0 + α0β1
~i + α0β2

~j + α0β3
~k + α1β0

~i − α1β1 + α1β2
~k

+ α1β3(−~j) + α2β0
~j + α2β1(−~k) − α2β2 + α2β3

~i + α3β0
~k

+ α3β1
~j + α3β2(−~i) + α3β3(−1)

= (α0β0 − α1β1 − α2β2 − α3β3) + (α0β1 + α1β0 + α2β3 − α3β2)~i

+ (α0β2 + α2β0 − α1β3 + α3β1)~j + (α0β3 + α3β0 + α1β2 − α2β1)~k
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It is a non-commutative ring (i.e) (R, +, ·) with multiplicative unit element
is called a Ring of Real Quaternions.

Some special classes of Ring: If R is a commutative ring, then a 6= 0 ∈ R
is said to be a zero divisor, if there exists an element b ∈ R, b 6= 0 ∋: ab = 0.

Example 3.10 In (Z6, ⊕, ⊙), 2̄ is a zero divisor because 3̄ = 0 such that
2̄ · 3̄ = 0. Also, 3̄ is also a zero divisor.

Definition 3.11 A commutation ring is an Integral Domain if it has no
zero divisor.

Example 3.12 (Z, +, ·) us a commutation ring and it has no zero divisor.

Definition 3.13 A ring is said to be divison ring if its non-zero elements
form a group under multiplication.

Example 3.14 (R, +, ·) is a division ring.

Definition 3.15 A field is a commutative division ring.

Example 3.16 (R, +, ·), (C, +, ·), (J7, ⊕, ⊙)

Lemma 3.17 If R is a ring, then ∀a, b ∈ R

1. a · 0 = 0 · a = 0

2. a(−b) = (−a) · b = −ab

3. −a × −b = +ab

4. If in addition, R has unit element 1, then (−1)a = a

5. (−1)(−1) = 1

Homomorphism

Definition 3.18 A mapping φ from the ring R into the ring R is said to a
homomorphism if,

1. φ(a + b) = φ(a) + φ(b)

2. φ(ab) = φ(a) · φ(b) ∀a, b ∈ R

Example 3.19 Let R′ and R′ be any two rings. Define φ : R → R′ by
φ(a) = 0′, ∀a ∈ R, 0′ is the identity element in R′ is clearly a homomorphism
and is called a trivial homomorphism. Define φ : R → R′ by φ(a) = a, ∀a ∈
R is also a homomorphism.
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Lemma 3.20 If φ is a homomorphism of R into R′ then

1. φ(0) = 0

2. φ(−a) = −φ(a) ∀a ∈ R

Remark 3.21 It need not be true that φ(1) = 1′ where 1 and 1′ are unit
elements of R and R′ respectively. However if R′ is an integral domain (or)
if R′ is an arbitrary but φ is onto then φ(1) = 1′.

Definition 3.22 Kernal of a homomorphism: If φ is a homomorphism
of R into R′, then the kernal of φ devoted by I(φ) is defined as, I(φ) = {a ∈
R|φ(a) = 0′, 0′ is the identity in R′}. I(φ) is a subset of R.

Example 3.23 (i) φ : R → R′, defined by φ(a) = 0′ ∀a ∈ R. Then I(φ) =
{a ∈ R|φ(a) = 0′} = R.
(ii)φ′ : R → R, by φ(a) = a ∀a ∈ R. Then I(φ) = {a ∈ R|φ(a) = 0′, 0′ is
identity in R} = {0}

Lemma 3.24 If φ is a homomorphism of R into R′ with kernal I(φ), then

1. I(φ) is a subgroup of R under addition,

2. If a ∈ I(φ) and r ∈ R there both ar and ra are in I(φ).

Example 3.25 1. J(
√

2) = {a + b
√

2|a, b ∈ J} which is a ring under
usual addition and multiplication. Define φ : J(

√
2) → J(

√
2) by

φ(a + b
√

2 = a − b
√

2. Clearly, φ is a homomorphism. I(φ) = {a ∈
R|φ(a) = 0′, 0′ is the identity in R′} = {0 + 0

√
2} = {0}.

2. Define φ : J → Jn by φ(a) = r where a = qn+r, 0 ≤ r < n. Clearly,φ
is a homomorphism of J onto Jn. I(φ) = {a ∈ R|φ(a) = 0′, 0′ is the
identity in R′} = {na/a ∈ J}.

3. Let R = {continuous real valued function on close internal [0, 1]} un-
der usual addition and multiplication of function. (i.e.) R = {f |f :
[0, 1] → R}. Let F be a ring of real numbers. Define φ : R → F by
φ(f(x)) = f(1/2). Then φ is a homomorphism of R onto F .

Definition 3.26 A homomorphism of R into R′ is said to be an isomor-
phism if it is a 1 − 1 mapping.

Definition 3.27 Two rings are said to be isomorphic if there is an isomor-
phism of one onto other.

Lemma 3.28 A homomorphism φ : R → R′ is an isomorphism iff I(φ) =
{0}
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Ideals and Quotient Rings

Definition 3.29 A non-empty set U of a ring R is said to be a two sided
ideal of R if

1. U is a subgroup of R with respect to addition,

2. For every, u ∈ U, r ∈ R both ru and ur ∈ U .

Example 3.30 (2J, +, ·) is ideal of (J, +, ·).

Example 3.31 Let φ : R → R′ be a homomorphism then the kernal I(φ) is
an ideal of R. Kernal of any homomorphism in a ring is an ideal of R.

Definition 3.32 Let U be an ideal of R, Define R/U = {a + U |a ∈ R}.
Define + and · as follows, let X = a + U ∈ R/U ; Y = b + U ∈ R/U . Then
X + Y = (a + b) + U and X · Y = ab + U . Under this operation + and ·,
R/U is a ring and this is called the quotient ring of R modulo U .

Remark 3.33 1. If R is commutative, then R/U is commutative. Con-
verse need not be true.

2. If R is a ring with unit element, then R/U is also a ring with unit
element.

Lemma 3.34 If U is an ideal of the ring R, then R/U is a ring and is a
homomorphism image of R under the definition φ : R → R/U by φ(a) =
a + U, ∀a ∈ R.

Result 3.35 1. If U is an ideal of R and 1 ∈ U then U = R.

2. If F is a field then its only ideals are {0} and F itself.

More Ideals and Quotient Rings:

Lemma 3.36 Let R be a commutative ring with unit element whose only
ideals are {0} and R itself. Then R is a field

Definition 3.37 An ideal M 6= R in a ring R is said to be a maximal ideal
of R if whenever U is an ideal of R such that M ⊂ U ⊂ R then either
M = U (or) U = R.

Theorem 3.38 If R is commutative ring and M is an ideal of R, then M
is a maximal ideal of R ⇔ R/M is a field.

Example 3.39 Let R = J and U be an ideal of R. U consists of all multiples
of a fixed integer U = {x|x = tn0, n0 is fixed integer, t ∈ J} = (n0). U is a
maximal ideal of R ⇔ n0 is prime ⇒ U = (2), (3), (5) are maximal ideal in
(J, +, ·).
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Definition 3.40 A ring R can be imbedded in a ring R′ if there is an iso-
morphism R into R′. R′ will be called an over ring (or) extension of R if R
can be imbedded in R′.

Field of Quotients of an Integral Domain

Theorem 3.41 Every integral domain can be imbedded in a field
Proof: This theorem can be proved in the following 4 steps,

1. Specify the elements of the field F .

2. Define (+) and (·) in F .

3. Prove that F is a field.

4. D can be imbedded in F .

Step 1: Let D be an integral domain. Define M = {(a, b)|a, b ∈ D, b 6= 0},
where (a, b) represents the quotient elements a/b. In M , we define a relation
∼ as follows, (a, b) ∼ (c, d) ⇔ ad = bc. Claim that ∼ is an equivalence
relation
∼ is reflexive:
Since ab = ba, ∀a, b ∈ D[∵ D is an integral domain and so it is a commutative
ring] ⇒ (a, b) ∼ (a, b) ∀a, b ∈ M . ∴ ∼ is reflexive.
∼ is symmetric:
Let (a, b) ∼ (c, d) ⇒ ad = bc ⇒ da = cb ⇒ cb = da ⇒ (c, d) ∼ (a, b). ∴ ∼ is
symmetric.
∼ is transitive:
Let (a, b) ∼ (c, d) and (c, d) ∼ (e, f) ⇒ ad = bc and cf = de. Now,

cf = de

⇒ bcf = bde

⇒ adf = bde(∵ bc = ad)

⇒ afd = bed

⇒ (af − be)d = 0

⇒ af − be = 0[∵ d 6= 0 and d, ad − bc ∈ D an integral domain]

⇒ af = be

⇒ (a, b) ∼ (e, f)

∴ ∼ is transitive. Hence, ∼ is an equivalence relation. Let [a, b] be the
equivalence class in M of (a, b). Let F = {[a, b]|(a, b) ∈ M, a, b ∈ D, b 6= 0}
Step 2:
Define + and · in F as follows: Let [a, b], [c, d] ∈ F . Define [a, b] + [c, d] =
[ad + bc, bd] and [a, b] · [c, d] = [ac, bd].
Step 3:
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+ is well define:
Suppose [a, b] = [a′, b′] and [c, d] = [c′, d′], then [a, b]+[c, d] = [a′, b′]+[c′, d′].
To Prove: [ad+bc, bd] = [a′d′+b′c′, b′d′]. It is enough to prove (ad+bc)b′d′ =
bd(a′d′ + b′c′). Now, [a, b] = [a′, b′] ⇒ ab′ = ba′......(1)
and [c, d] = [c′, d′] ⇒ cd′ = dc′......(2)

(ad + bc)b′d′ = adb′d′ + bcb′d′

= ab′dd′ + bb′cd′

= ba′dd′ + bb′dc

= bd(a′d′ + b′c′)

∴ + is well defined.
+ is closed:
Let [a, b], [c, d] ∈ F . Then D is an integral domain, bd 6= 0. Now, [a, b] +
[c, d] = [ad + bc, bd] ∈ F [∵ bd 6= 0]. ∴ + is closed.
+ is associative:

([a, b] + [c, d]) + (e, f) = [ad + bc, bd] + (e, f)

= [(ad + bc)f + (bd)e, (bd)f ]

= [adf + bcf + bde, bdf ]

= [adf + (bcf + bde), bdf ]

= [a(df) + b(cf + de), bdf ]

= [a, b] + [cf + de, df ]

= [a, b] + ([c, d] + [e, f ])

∴ + is associative.
Additive identity:
[0, b] ∈ F acts as zero element for this addition. For [a, b] + [0, b] = [ab +
0, b2] = [ab, b2] = [a, b].
Additive inverse:
[−a, b] acts as a identive inverse of [a, b]. For [−a, b]+[a, b] = [−ab+ba, b2] =
[0, b2].
+ is commutative:
[a, b]+[c, d] = [ad+bc, bd] = [bc+ad, bd] = [cb+da, bd] = [c, d]+[a, b] ∀[a, b]+
[c, d] ∈ F. ∴ + is commutative.
∴ (F, +) is an abelian group.
· is well defined:
Suppose [a, b] = [a′, b′] and [c, d] = [c′, d′]. To Prove [a, b] · [c, d] = [a′, b′] ·
[c′, d′] (i.e.) [ac, bd] = [a′c′, b′d′]. It is enough to prove that (ac)(b′d′) =
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(bd)(a′c′). Now,

(ac)(b′d′) = acb′d′

= ba′cd′ [∵ [a, b] = [a′, b′]]

= ba′dc′ [∵ ab′ = ba′]

= (bd)(a′c′) [∵ [c, d] = [c′, d′], cd′ = dc′].

∴ · is well defined.
· is closed:
Let [a, b], [c, d] ∈ F [b, d ∈ D, b 6= 0, d 6= 0 ∴ bd 6= 0]. Now, [a, b] · [c, d] =
[ac, bd] ∈ F [∵ bd 6= 0]. ∴ · is closed.
· is associative:

([a, b] · [c, d]) · (e, f) = [(ac)e, (bd)f ]

= [a(ce), b(df)]

= [a, b][ce, df ]

= [a, b]([c, d], [e, f ])

∴ · is associative.
Existence of Multiplicative Identity:
Let [a, a] ∈ F, a 6= 0 be the multiplicative identity. For, [a, b] · [a, a] =
[a2, ab] = [a, b] and for,[a, a] · [a, b] = [a2, ab] = [a, b]. (i.e.) [a, b] · [a, a] =
[a, a] · [a, b] = [a, b].
Existence of Multiplicative inverse:
Let [a, b] ∈ F, b 6= 0. Then [b, a] ∈ F, a 6= 0 is the multiplicative inverse. For,
[a, b] · [b, a] = [ab, ba] = [ab, ab] = [a, a] [∵ (ab, ba) ∼ (a, b)].
· is commutative:
Let [a, b], [c, d] ∈ F. [a, b] · [c, d] = [ac, bd] = [ca, db] = [c, d] · [a, b]. ∴ · is
commutative.
∴ (F\{0}, ·) is abelian group.
· is distributive over addition:

[a, b] · ([c, d] + [e, f ]) = [a, b] · [cf + de, df ]

= [a(cf + de), b(df)]

= [(acf + ade), bdf ]

= [(ac)f + (ae)d, (bd)f ]

= [(ac)(bf) + (ae)(bd), (bd)(bf)]

= [ac, bd] + [ae, bf ]

= [a, b] · [c, d] + [a, b] · [e, f ]
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and

([c, d] + [e, f ]) · [a, b] = [cf + de, df ] · [a, b]

= [(cf + de)a, (df)b]

= [cfa + dea, dfb]

= [(ca)f + d(ea), d(fb)]

= [(ca)(fb) + (db)(ea), (db)(fb)]

= [ca, db] + [ea, fb]

= [c, d] · [a, b] + [e, f ] · [a, b].

Hence F is a field.
Step 4:
We have to prove D can be imbedded in F . (i.e.) We shall find an isomor-
phism of D → F . We first notice that x 6= 0, y 6= 0 in D, [ax, x] = [ay, y] [∵
(ax, x) ∼ (ay, y) ∵ axy = axy]. Denote [ax, x] by [a, 1]. Define φ : D → F
by φ(a) = [a, 1] ∀a in D.
φ is 1 − 1:
Suppose φ(a) = φ(b), a, b ∈ D. [a, 1] = [b, 1] ⇒ (a, 1) ∼ (b, 1) ⇒ a · 1 =
b · 1 ⇒ a = b. ∴ φ is 1 − 1.
φ is homomorphism:
φ(a + b) = [a + b, 1] = [a, 1] + [b, 1] = φ(a) + φ(b) and φ(ab) = [ab, 1] =
[a, 1] · [b, 1] = φ(a) · φ(b). ∴ φ is an isomorphism of D into F . If D has
the unit element 1, then φ(1) is the unit element of F . Hence D can be
imbedded into F . Hence the theorem.

Note: Usually, the above field F is called field of quotients of D.

Polynomial Rings

Definition 3.42 Let F be a field. The Ring of polynomials in the inde-
terminate x, written as F (x), defined as {a0 + a1x + a2x2 + ... + anxn}
where n ∈ Z+ ∪ {0} and the coefficient a0, a1, a2, ..., an are all in F . (i.e.)
F (x) = {a0 + a1x + a2x2 + ... + anxn|a0, a1, a2, ..., an ∈ F, n ∈ Z+ ∪ {0}}.

Definition 3.43 If p(x) = a0 + a1x + a2x2 + ... + amxm and q(x) = b0 +
b1x + ... + bnxn are in F [x]. Then,

1. p(x) = q(x) ⇔ ai = bi ∀i ≥ 0,

2. p(x) + q(x) = c0 + c1x + 2x2 + ... + ctx
t where ai + bi = ci∀i,

3. p(x) · q(x) = c0 + c1x + 2x2 + ... + ctx
t where ct = atb0 + at−1b1 +

at−2b2 + ... + a0bt.

Note 3.44 c0 = a0b0, c1 = a0b1 + a1b0, c2 = a0b2 + a1b1 + a2b2.
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Remark 3.45 F [x] is a commutative ring with unit element under addition
and multiplication of polynomials defined above.

Definition 3.46 Degree of a polynomial If f(x) = anxn +..+a1x+a0 6=
0 in F [x] and an 6= 0 ((i.e.) ai = 0 ∀i ≥ 0), then degree of f(x), denoted
by deg(f(x)) is n. (i.e.) deg(f(x)) is the largest integer i for which ith

coefficient of f(x) 6= 0.

Remark 3.47 we do not define the degree of the zero polynomial. We say
a polynomial is constant if its degree is zero.

Lemma 3.48 If f(x) and g(x) are non-zero elements of F [x]. Then degree
of deg(f(x)g(x)) = def(f(x)) + deg(g(x))
Proof: Let f(x) = a0 + a1x + a2x2 + ... + amxm, am 6= 0 [ai = 0, ∀i > m] in
F [x]..... (1)
Let g(x) = b0 + b1x + ... + bnxn, bn 6= 0 [bj = 0∀j ≥ n]in F (x)......(2)
Then deg(f(x)) = m and deg(g(x)) = n. By definition, f(x)g(x) = c0 +
c1x + c2x2 + ... + ckxk, where ct = atb0 + at−1b1 + .... + a0bt. Claim that
cm+n 6= 0 and ∀i > m + n, ci = 0. Now, cm+n = am+nb0 + am+n−1b1 +
am+n−2b2 + ... + am+2bn−2 + am+1bn−1 + ambn + am−1bn+1 + ... + a0bm+n =
ambn 6= 0 ⇒ cm+n 6= 0...... (3)[∵ am 6= 0 and bm 6= 0 and ambm ∈ F ].
For every i > m+n ⇒ i−j +j > m+n ⇒ either j > m (or) i−j > n. Then
one of aj or bi−j is zero, so that ajbi−j = 0 ⇒ ci = aib0 +ai−1b1 + ...+a0bi =∑

ajbi−j = 0. For every i > m + n, ci = 0......(4)
Hence the claim follows from (3) and (4). ∴ deg(f(x) · g(x)) = m + n =
deg(f(x)) + deg(g(x)). Hence, the lemma.

Corollary 3.49 (1) If f(x) and g(x) are non-zero elements in F [x] then
deg(f(x)) ≤ deg(f(x) · g(x)). By the above lemma, deg(f(x) · g(x)) =
deg(f(x)) + deg(g(x)) ≥ degf((x))[∵ deg(g(x)) ≥ 0].
(2) F [x] is integral domain.
Proof: Clearly F [x] is a common ring with unit element. To prove F [x]
is an integral domain, it is enough to prove that F [x] has no zero divisor,
(i.e)product of any two non- zero elements in F [x] is again a non-zero el-
ement in F [x]. Let f(x) = a0 + a1x + ... + amxm, am 6= 0 in F [x] and
g(x) = b0 + b1x + ... + bnxn, bn 6= 0 in F [x]. ∵ am 6= 0, bn 6= 0 and am, bn are
in F [x], am · bn 6= 0. (i.e) the coefficient of xm+n in f(x) · g(x) is non-zero.
∴ f(x) · g(x) 6= 0 in F [x]. Hence F [x] is an integral domain.

Lemma 3.50 Existence of division algorithm in F [x]: Given two poly-
nomials f(x) and g(x) 6= 0 in F [x]. Then there exists two polynomials t(x)
and r(x) in F [x] such that f(x) = t(x) · g(x) + r(x), where either r(x) = 0
(or) deg(r(x)) < deg(g(x)).
Proof: Let f(x) = a0 + a1x + a2x2 + ... + amxm, am 6= 0 in F [x] and
g(x) = b0 + b1x + b2x2 + ... + bnxn, bn 6= 0 in F [x] ⇒ deg(f(x)) = m and
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deg(g(x)) = n.
Case(i): If m = 0 (or) m < n, nothing to prove. For put t(x) = 0 and
r(x) = f(x), where f(x), deg(f(x)) < deg(g(x)).
Case(ii): Assume that m ≥ n. we shall prove the theorem by induction on
degree of f(x). If m = 0 and n = 0 ⇒ f(x)and g(x)are non-zero constant
polynomial. Let f(x) = a 6= 0, g(x) = b 6= 0, a, b ∈ F [x]. Let ab−1 = t(x).
Now, a = (ab−1)b 6= 0 ⇒ f(x) = t(x) · g(x) + r(x) , where r(x) = 0. ∴ The
result is true clearly. Assume that the result is true ∀ polynomial of degree
< m. Consider the polynomial,

f1(x) = f(x) − amb−1
n xm−1g(x)...........(1)

= a0 + a1x + .... + amxm − amb−1
n xm−n(b0 + b1x + b2x2 + .... + bnxn)

= a0 + a1x + ... + amxm − amb−1
n xm−nb0 − amb−1

n xm−nb1 − .... − amxm

⇒ deg(f1(x)) ≤ m − 1 < m ⇒ deg(f1(x)) < m.

∴ By induction hypothesis, there exists a polynomial t1(x), r(x) ∈ F [x] such
that f1(x) = t1(x)g(x) + r(x) where r(x) = 0 (or)deg (r(x)) <deg (g(x)).
From (1),

f(x) = f1(x) + amb−1
n xm−ng(x)

= t1(x)g(x) + r(x) + amb−1
n xm−ng(x)

= (t1(x) + amb−1
n xm−n)g(x) + r(x),

where r(x) = 0 (or) deg r(x) < deg g(x). This proves the existence of
polynomial t(x) and r(x)
To Prove: Uniqueness
Suppose, f(x) = t1(x)g(x)+r1(x) and f(x) = t(x)g(x)+r(x), where r1(x) =
0 and deg(r1(x)) < deg(g(x)) ⇒ t1(x)g(x) + r1(x) = t(x)g(x) + r(x) ⇒
[t1(x) − t(x)]g(x) = r(x) − r1(x)......(2)
If r(x) = 0 and r1(x) = 0 ⇒ t(x) = t1(x). If deg(r(x)) < deg(g(x)) and
deg(r1(x)) < deg(g(x)). Then (2) ⇒ deg([t1(x) − t(x)]g(x)) = deg(r(x) −
r1(x)). This is possible only if t1(x) − t(x) = 0. ∴ r1(x) − r(x) = 0 ⇒
r(x) = r1(x). Hence the uniqueness.

Theorem 3.51 F [x] is euclidean ring.
Proof: F [x] is an Integral Domain with unit element. Define a function d
on a non-zero polynomial f(x) in F [x] as d(f(x)) = deg(f(x)). ∴ d(f(x)) ≥
0[∵ deg(f(x)≥0]. (i.e)d(f(x)) is non negative..........(1)
By Corollary 3.49, we have proved that if g(x) and f(x) are non-zero el-
ements in F [x], then d(f(x)) ≤ deg (f(x) · g(x)). (i.e) d(f(x)) ≤ d(f(x) ·
g(x))...........(2)
By the above lemma, given two polynomials f(x) and g(x) 6= 0 in F [x], then
there exists two polynomials t(x) and r(x) in F [x], ∋: f(x) = t(x)·g(x)+r(x),
where r(x) = 0 (or) deg(r(x)) < deg(g(x))......(3)
From (1),(2) and (3) F [x] is euclidean ring.
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Lemma 3.52 F (x) is a principal ideal ring.
Proof: Clearly, F (x) is an integral domain with unit element. Let U be the
ideal of F (x). Suppose u = (0). (i.e.) U is an ideal generated by zero. Then
F (x)is principle ideal ring. Then nothing to prove. Suppose u 6= 0. Then
there exists an element f(x) ∈ F [x] such that 0 6= f(x) in U ⊂ F [x]. Claim
that U = (g(x)). Let g(x) be a polynomial of least degree in U . By division
algorithm, there exists t(x), r(x) ∈ F [x] ∋: f(x) = t(x) · g(x) + r(x)
where r(x) = 0 (or) deg(r(x)) < deg(g(x)).....(1)
Since U is an ideal and t(x) ∈ F [x] and g(x) ∈ U, t(x) · g(x) ∈ U and also
f(x) ∈ U ⇒ t(x) · g(x) − f(x) ∈ U ⇒ r(x) ∈ U . ∵ g(x) is a least degree
polynomial in U, deg(r(x)) cannot be less than deg(g(x)). ∴ r(x) = 0.
∴ f(x) = t(x) · g(x) ∈ U . Every polynomial of F [x] can be written as a
multiple of g(x) ⇒ f(x) ∈ (g(x)). ∴ U = (g(x)). Hence the claim. ∴ U is
a principle ideal in F [x] and U is arbitrary. ∴ F [x] is a principle ideal ring.

Lemma 3.53 Given two polynomials f(x), g(x) in F [x] they have a great-
est common divisor which can be realised as d(x) = λ(x)f(x) + l1(x)g(x) for
some polynomial λ(x), l1(x)
Proof: Let S = {s(x)f(x) + t(x)g(x)|s(x) and t(x) ∈ F [x]}. Then F [x] is
a ring with unit element. Let s(x) = 1; t(x) = 0. Then f(x) ∈ S. Similarly
g(x) ∈ S. So, S 6= φ. Let h1(x), h2(x) ∈ S. Then, h1(x) = s1(x)f(x)+t1(x)·
g(x); h2(x) = s2(x)f(x) + t2(x)g(x), where s1(x), s2(x), t1(x), t2(x) ∈ F [x].
Now,

h1(x) − h2(x) = [s1(x)f(x) + t1(x)g(x)] − [s2(x)f(x) + t2(x)g(x)]

= [s1(x) − s2(x)]f(x) + [t1(x) − t2(x)]g(x),

where s1(x) − s2(x), t1(x) − t2(x) ∈ F [x]

= s(x)f(x) − t(x)g(x),

where s(x) = s1(x) − s2(x), t(x) = t1(x) − t2(x)

∴ h1(x) − h2(x) ∈ S.....(1)
Let p(x) ∈ F [x] and h(x) ∈ S. Then,

p(x) · h(x) = p(x)[s(x)f(x) + t(x)g(x)]

= (p(x)s(x))f(x) + (p(x)t(x))g(x),

where p(x)s(x) ∈ F (x) and p(x)t(x) ∈ F (x)

∴ p(x) · h(x) ∈ S......(2)
From (1) and (2), S is an ideal. ∵ F [x] is an euclidean ring. ∴ S is
a principle ideal. S = (m(x)) for some m(x) ∈ S. m(x) = s0(x)f(x) +
t0(x)g(x), where s0(x) and t0(x) ∈ F [x].........(*)
Since f(x) · g(x) ∈ S, f(x) = a(x) · m(x) ⇒ m(x)/f(x) and g(x) = b(x) ·
m(x) ⇒ m(x)/g(x).
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Remark 3.54 A polynomial over an arbitrary ring is not a principle ideal
ring.
Proof: The ring polynomial J [x] over ring of integers is not a principle ideal
ring.
Claim 1: The ideal (2, x) of J [x] generated by (2, x) of J [x] is not a principle
ideal ring. Suppose (2, x) is principle ideal in J [x], there exists g(x) ∈
J(x) ∋: (2, x) = g(x) [∵ 2 ∈ (2, x) ⇒ 2 ∈ (g(x))]. ∴ There exists φ(x) ∈
J [x] such that 2 = φ(x) · g(x).....(1)
∵ x ∈ (g(x)), there exists φ′(x) ∈ J [x] ∋: x = φ′(x) · g(x).....(2)
From (1) and (2),

(1) ⇒ 2x = x · φ(x) · g(x)

(2) ⇒ 2x = 2 · φ′(x)g(x)

⇒ x · φ(x) · g(x) = 2 · φ′(x)g(x)

⇒ (x · φ(x) − 2 · φ′(x))g(x) = 0

⇒ xφ(x) = 2φ′(x) [∵ g(x) 6= 0 and J [x] is integral domain]

⇒ coefficient of φ(x) must be an even integer. ∴ φ(x) = 2h(x) ⇒ h(x) ∈
J [x].....(3)
From (1) and (3), 2 = 2h(x) · g(x) ⇒ 1 = h(x) · g(x) ⇒ 1 ∈ (g(x)) ⇒ J [x] =
(g(x)) = (2, x) [∵ 1 ∈ U ⇒ U = R]. ∴ Every element of J [x] belong to
(2, x) .....(A)
Claim 2: 1 /∈ (2, x)
Suppose 1 ∈ (2, x) then by Lemma 3.53, [d(x) = λ(x)f(x) + l1(x)g(x)] ⇒
1 = 2p(x) + xq(x), p(x), q(x) ∈ J [x]. Let p(x) = a0 + a1x + a2x2 + ...; q(x) =
b0 +b1x+b2x2 + ... Now, 1 = 2[a0 +a1x+a2x2 + ...]+x[b0 +b1x+b2x2 + ...] ⇒
1 = 2a0 ⇒ a0 = 1/2 /∈ J ⇒⇐ Hence, the claim(2). 1 /∈ (2, x) which is a
⇒⇐ to (A). ∴ (2, x) is not a principle ideal of J [x]. ∴ J [x] is not a principle
ideal ring

Definition 3.55 A polynomial p(x) ∈ F [x] is said to be irreducible over
F [x] if whenever p(x) = a(x)b(x) with a(x), b(x) ∈ F [x]. Then one of a(x)
or b(x) has degree 0. (i.e.) a constant.

Example 3.56 Let f(x) = x2 + 1 = (x + i)(x − i) is irreducible over real
field but not over complex.

Lemma 3.57 Any polynomial in F [x] can be written in a unique manner
as a product of irreducible polynomial in F [x]
Proof: Let f(x) be a non-zero polynomial in F [x]. Then clearly, deg(f(x)) >
0. Let a be the coefficients of the leading terms of f(x). Now, when f(x) is
of degree 1, it is of the form a0 + ax, where a0, a ∈ F and a 6= 0. We may
also write it in the form f(x) = a(a−1a0 + x). Clearly, a−1a0 + x is a monic
irreducible polynomial in F [x] and a is an element of F . So, when f(x) is
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a polynomial of degree 1, the theorem follows. Let us assume the theorem
to be true ∀ polynomials of degree less than that of f(x) and by induction
we must show it to be true for f(x). Since the coefficient of the leading
term of f(x) is a, we may write f(x) = af1(x), where f1(x) = a−1f(x)
and therefore f1(x) is a monic polynomial. Now, if f(x) is irreducible,
then so is f1(x) and so in this case the theorem will follow. On the other
hand, if f(x) is reducible we have, f(x) = g(x) · h(x), where g(x) and h(x)
are non-unit, non-zero polynomials in F [x]. ∵ F [x] is a polynomial over
the field F , deg[g(x) · h(x)] = deg(g(x)) + deg(h(x)) and since each one of
g(x) and h(x) is a non-zero, non-unit polynomial in F [x]. deg(g(x)) > 0
and degh(x) > 0 and therefore, deg(g(x)) < deg[g(x) · h(x)] = deg(f(x))
and deg(h(x)) < deg[g(x) · h(x)] = deg(f(x)) [By Corollary 3.49]. So by
assumed hypothesis, we can write g(x) = a1p1(x)p2(x) · · · pn(x), where
each pi(x) is monic irreducible in F [x] and h(x) = a2q1(x)q2(x) · · · qm(x),
where each qj(x) is monic irreducible in F [x]. ∴ f(x) = g(x) · h(x) =
a1a2p1(x)p2(x) · · · pn(x)q1(x) · · · qm(x) =product of finite no of irreducible
polynomial in F [x], where each pi(x) and qj(x) are monic irreducible in
F [x]. Thus the theorem holds for f(x) and therefore by induction hypoth-
esis ∀ polynomials in F [x]. Now in order to show that this decomposition
is unique, let f(x) = ap1(x)p2(x) · · · pm(x) = aq1(x)q2(x) · · · qn(x), where
each pi(x) and qj(x) are the monic irreducible polynomials in F [x]. Then
p1(x)p2(x) · · · pm(x) = q1(x)q2(x) · · · qn(x).......(1).
It is clear that p1(x)/p1(x)p2(x) · · · pm(x) and so from (1) we have,
p1(x)/q1(x)q2(x) · · ·qn(x). But this means that p1(x) must divide atleast one
of q1(x)q2(x) · · · qn(x). ∵ F [x] is commutative ring, we may assume that
p1(x)/q1(x). Now, p1(x)/q1(x)and p1(x), q1(x) are irreducible polynomials
in F [x]. ⇒ p1(x) and q1(x) are associates. ⇒ q1(x) is unit times p1(x).
⇒ q1(x) = up1(x) where u is a unit in F [x]. [∵ units in F [x] are constant
polynomial] ⇒ q1(x) = p1(x) [∵ q1(x) and p1(x) being monic, we must have
u = 1]. Consequently, p1(x)p2(x) · · · pm(x) = q1(x)q2(x) · · · qn(x) [∵ p1 = q1]
and therefore, p2(x)p3(x) · · · pm(x) = q2(x)q3(x) · · · qn(x) [canceling p1(x)].
Now, we can repeat the above argument on this relation with p2(x).
We continue the above process. Now, if n > m then after m steps the LHS
of (1) will become 1 and the RHS of (1) will reduce to a product of a certain
number of q(x)′s (the excess of n over m). But each qi(x) being irreducible
polynomial, the product of there q(x)’s will therefore be a polynomial of
degree not less than 1 and therefore, this product can never be 1. Thus, a
⇒⇐ consequently n and m. Similarly, by changing the rules of p(x) and
q(x) we have m and n. Hence m = n. Also in the above process, we have
shown that every p(x) is equal to q(x). Hence the decomposition is unique
except for the order in which the factors occur.

Lemma 3.58 The ideal A = (p(x)) in F [x] is a maximal ideal ⇔ p(x) is
irreducible over F .
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Proof: Suppose A = (p(x)) is a maximal ideal F [x]. (i.e.) 0 6= p(x) is
maximal in F [x]. To Prove: p(x) is irreducible over F . Since the ideal
generated by p(x) is maximal, (p(x)) 6= F [x] and p(x) is prime (∵ Every
maximal ideal is prime). Consider the polynomial f(x), g(x) ∈ F [x] ∋: f(x)·
g(x) ∈ (p(x)) ⇒ f(x) ∈ p(x) (or) g(x) ∈ p(x) ⇒ f(x) = t(x)p(x) (or) g(x) =
r(x)p(x) ⇒ p(x)/f(x) (or) p(x)/f(x). Thus, p(x)/f(x) · g(x) ⇒ p(x)/f(x)
(or) p(x)/g(x) ⇒ p(x) is irreducible over F . Conversely, suppose that p(x)
is a maximal ideal in F [x]. To Prove:A = (p(x)) is a maximal ideal in F [x].
Suppose there exists an ideal N of F [x] ∋: (p(x)) ⊂ N ⊂ F [x]........(1)
Since N is in F [x], which is a principal ideal ring, N = (g(x)), g(x) ∈ F [x].
From (1), (p(x)) ⊂ (g(x)) ⊂ F [x] ⇒ (p(x)) ⊂ (g(x)) ⇒ (p(x)) ∈ (g(x)) ⇒
(p(x)) = t(x) · g(x), t(x) ∈ F [x] ∵ p(x) is irreducible either deg(t(x)) = 0
or deg(g(x)) = 0. Suppose deg(g(x)) = 0. Then g(x) is a non-zero constant,
say g(x) = a, a 6= 0 in F. ∵ F is a field, a = g(x) is a unit in F [x]. Then,
N = F [x] [∵ g(x) = F [x]].....(2).
Suppose deg(t(x)) = 0. Let t(x) = b, a non-zero element in F . ∴ g(x) =
1

b
p(x) ⇒ g(x) ∈ (p(x)) ⇒ N ⊆ (p(x)). But (p(x)) ⊆ N

∴ N = (p(x)). Thus, p(x) ⊆ N ⊆ F [x] ⇒ either (p(x)) = N (or) N =
F [x]. ∴ (p(x)) is maximal in F [x].

Polynomials over the Rational Field:

Definition 3.59 The polynomial f(x) = a0 +a1x+a2x2 + ...+anxn, where
a0, a1, ..., an are integers is said to be primitive if the GCD of a0, a1, ..., an

is 1. For example, f(x) = 3 + 5x + 7x2 is primitive.

Definition 3.60 A polynomial in which the leading coefficient is 1 is called
as monic polynomial. For example, f(x) = 2 + 3x + 4x2 + x3 is monic
polynomial.

Definition 3.61 A polynomial is said to an integer monic if all the coef-
ficients are integers and the leading coefficient is 1. For example, f(x) =
5 − 6x + 12x2 + x3 is integer monic polynomial.

Lemma 3.62 If f(x) and g(x) are primitive polynomials, then f(x) · g(x)
is a primitive polynomial.[product of any two primitive polynomial is again
primitive].
Proof: Let f(x) = a0 +a1(x)+ ...+anxn and g(x) = b0 + b1(x)+ ...+ bmxm

be primitive polynomials. To Prove: f(x) · g(x) is primitive. Suppose not,
(i.e) f(x) · g(x) is not primitive. Then all the coefficient of f(x) · g(x) would
be divisible by some integer > 1. Hence some prime number p, p divides all
the coefficient of f(x) · g(x). ∵ f(x)is primitive, p does not divides all the
coefficients of f(x). Let aj be the first coefficient of f(x) such that p does
not divides aj . [(i.e)p/a0, p/a1, ..., p/aj−1].......(1)
Similarly, ∵ g(x) is primitive, p does not divides all the coefficients of
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g(x). Let bk be the first coefficient of g(x) such that does not divides bk.
[(i.e.)p/b0, p/b1, ..., p/bk−1] ......(2)
cj+k = (aj+kb0 + aj+k−1b1 + ... + aj+1bk−1) + ajbk

+(aj−1bk+1 + ... + a1bj+k−1 + a0bj+k)....... (3)
By our choice of aj , p/a0, p/a1, ..., p/aj−1

⇒ p/a0bj+k + a1bj+k+1 + .. + aj−1bk+1....... (4)
By our choice of bk, p/b0, p/b1, ..., p/bk−1

⇒ p/aj+kb0 + aj+k+1b1 + .. + aj+1bk−1....... (5)
But p/cj+k ⇒ p/(cj+k) − (a0bj+k + a1bj+k−1 + ... + aj−1bk+1)

−(aj+kb0 + aj+k+1b1 + ... + aj+1bk−1)
⇒ p/ajbk [by (3)] ⇒ p/aj (or) p/bk[∵ p is prime]
⇒⇐ to p does not divides aj and p does not divides bk. ∴ Our assumption
is wrong. Hence, f(x) · g(x) is primitive. Hence, the lemma.

Definition 3.63 Content of the Polynomial Let f(x) = a0 + a1x +
a2x2 + ... + anxn, where ai’s are integers. The content of the polynomial
is the GCD of a0, a1, a2, ..., an and it is denoted by c(f). (i.e.) c(f) =
(a0, a1, a2, ...an).

Example 3.64 Let p(x) = 5+10x+25x2+30x3. Then c(f) = (5, 10, 25, 30) =
5.

Remark 3.65 1. Any polynomial with integer coefficient is said to be
integer monic if the content of f(x) = 1.

2. Any polynomial p(x) with integer coefficient can be written as p(x) =
d(g(x)), where d is the content of p(x), and g(x) is primitive.

Example 3.66 p(x) = 3 + 6x + 9x2 − 12x3 = 3(1 + 2x + 3x2 − 4x3) =
c(p(x))g(x), where c(p(x)) = 3 and g(x) = 1 + 2x + 3x2 − 4x3, primitive.

Theorem 3.67 Gauss Lemma If the primitive polynomial f(x) can be
factored as the product of two polynomials having rational coefficient, it can
be factored as the product of two polynomials having integer coefficients.
Proof: Suppose f(x) = u(x) · v(x), where u(x) and v(x) are polynomial
having rational coefficients. Let u(x) = a0

b0
+ (a1

b1
)x + (a2

b2
)x2 + ... + (an

bn

)xn,
where ai’s and bj ’s are integers and bj ’s 6= 0, ∀j. Claim that f(x) = a

b
λ(x) ·

l1(x), where a, b are integer and λ(x), l1(x) are primitive polynomial with
integer coefficients.
u(x) = 1

b0b1b2···bn

[a0(b1b2 · · · bn) + a1(b0b2b3 · · · bn)x + a2(b0b1b2 · · · bn)x2 +

... + an(b0b1b2 · · · bn−1)xn] = 1

m
[c0 + c1x + c2x2 + .. + cnxn]....... (1)

where m = b0b1b2 · · · bn; c0 = a0(b1b2 · · · bn); c1 = a1(b0b2b3 · · · bn); · · ·; cn =
an(b0b1b2 · · · bn−1). ∵ any polynomial f(x) can be written as f(x) = d · g(x)
where d is content of f(x) and g(x) is primitive. c0 +c1x+c2x2 + ...+cnxn =
dλ(x), where d = (c0, c1, c2, ..., cn) and λ(x) is primitive. ∴ From (1), u(x) =



47

d
m

λ(x), where d = (c0, c1, c2, ..., cn), λ(x) is primitive and d and m are

integers. Similarly v(x) = d1

m1
l1(x), where d1 and m1 are integer and l1x is

primitive. ∴ f(x) = u(x) · v(x) = d
m

· d1

m1
· λ(x)l1(x) = a

b
λ(x)l1(x).........(2)

where a = dd1 and b = mm1 are integers ⇒ bf(x) = aλ(x)l1(x)....... (3)
⇒ c(bf(x)) = c(aλ(x)l1(x)) ⇒ bc(f(x)) = ac(λ(x)l1(x)) ⇒ b = a........ (4)
[∵ f(x), l1(x), λ(x) are primitive, their content is 1]. From (2) and (4),
f(x) = λ(x)l1(x). ∴ f(x) can be factored as a product of two polynomial
having two integer coefficient. [λ(x) and l1(x) are polynomial having integer
coefficient]. Hence the theorem.

Corollary 3.68 If an integer monic polynomial factors as the product of
two non-constant polynomials having rational coefficients then it factors as
the product of two integer monic polynomials.
Proof: f(x) is an integer monic polynomial and factored as a product of
two non-constant polynomials having rational coefficients. (i.e.) f(x) is
a primitive polynomial factored as the product of two polynomial having
rational coefficients. By Theorem 3.67 f(x) can be factored as product of
two polynomials having integer coefficients. Let f(x) = p(x) · r(x), where
p(x), r(x) are polynomial with integer coefficient. Let p(x) = a0 + a1x +
a2x2 + ... + anxn and r(x) = b0 + b1x + b2x2 + ... + bmxm, where ai’s and bj ’s
are integers. ∵ f(x) is monic, leading coefficient of f(x) is 1. Then leading
coefficient of p(x) · r(x) = 1 ⇒ an = bm = 1 ⇒ either an = bm = 1 (or)
an = bm = −1. ∴ In either case, p(x), r(x) are integer monic polynomials.
Hence f(x) can be factored as the product of two integer monic polynomials.
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4. UNIT IV

Vector Spaces

Definition 4.1 Vector Space: A non empty set V is said to be a vector
space over a field F if V is an abelian group under(addition) and if for every
α ∈ F, v ∈ V , there is defined an element αv in V subject to

1. α(v + w) = αv + αw

2. (α+ β) = αv + βv

3. α(βv) = (αβ)v

4. 1 · v = v ∀α, β ∈ F, v, w ∈ V

where 1 represents the unit element of V under usual multiplication.

Remark 4.2 Axiom 1 states the fact that the multiplication element of V
for fixed scalar α defined homomorphism of abelian group V into itself if
α 6= 0 this homomorphism can be shown to be an isomorphism.

Example 4.3 (i) Let F be a given field. Let K be a field which contains
F as a subfield. We consider K as a vector space over F . For (K,+) is
an abelian group, for α ∈ F, v ∈ K,αv ∈ K. Axioms 1, 2 and 3 for K
as a vector space over F are the consequences of right distributive law, left
distributive law, and associative law respectively which holds for K as a ring
. Since 1 is the identity element in K, the Axiom 4 follows from it.
(ii) Let F be a field Let V = {(α1, α2....αn)|αi ∈ F}= all order of n tuples
= F (n).

Example 4.4 (R,+, ·) is a field. V = {(α1, α2)|αi ∈ R∗} = R(2), V =
{(α1, α2, α3)|αi ∈ R∗} = R(3).

Example 4.5 (Q∗,+, ·) is a field. V = {(α1, α2)|αi ∈ Q∗} = Q(2) and
V = {(α1, α2, α3)|αi ∈ Q∗ = Q(3).

Example 4.6 Let F be a field V = F [x]= set of all of polynomial x over
F = {α0 + α1x+ α2x

2 + ...+ αnx
n|αi ∈ F}. Then V is a vector space over

F .

Definition 4.7 Subspace: Let V be a vector space over a field F and if
W is a subset of V . Then W is a subspace of V , if under the operations
of V , W itself forms a vector space over F . Equivalently W subspace of V
whenever w1, w2 ∈ W,α, β ∈ F implies αw1 + βw2 ∈ W .
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Example 4.8 Let F be a field. Let Vn be the set of all polynomials of
degree less than n. Under natural operations for polynomials of addition
and multiplication. Vn be the vector space over F , which is a subspace of
V = F [x] = {α0 + α1x+ α2x

2 + ...+ αnx
n + ...|αi ∈ F}.

Definition 4.9 If U and V are the vector spaces over F then the mapping
T of U into V is said to be a homomorphism if
(i)(u1 + u2)T = u1T + u2T, ∀u1, u2 ∈ U and α ∈ F
(ii) (αu1)T = α(u1T )
if T , in addition is 1−1 we call it an isomorphism. Ker T = {u ∈ U |uT = 0,
identity element of addition in V }.

Remark 4.10 T is an isomorphism iff Ker T = {0}

Definition 4.11 Two vector spaces are said to be isomorphic if there is an
isomorphism of one onto the other.

Lemma 4.12 Let V is a vector space over F

1. α(0) = 0 for α ∈ F ,

2. 0 · v = 0 for v ∈ V ,

3. (−α)v = −αv, for α ∈ F, v ∈ V ,

4. if v 6= 0 then α · v = 0 ⇒ α = 0.

Lemma 4.13 If V is a vector space over F and W is a Subspace of V .
Then V/W = {v + W |v ∈ V }. Let v1 + W, v2 + W ∈ V/W and α ∈ F .
Define (i) (v1 +W ) + (v2 +W ) = v1 + v2 +W ,

(ii) (v1 +W ) = αv1 +W .
Under the operation defined above under the operation V/W is a vector space
and is called quotient space of V/W .

Theorem 4.14 Fundamental theorem for vector homomorphism:

If T is a homomorphism of U onto V with kernal W . Then V is isomorphic
to U/W conversely if U is a vector space and W is a subspace of U . Then
there is a homomorphism of U onto U/W .

Definition 4.15 Let V be a vector space over F and let U1, U2, ..., Un be
subspace of V . Then V is said to be the internal direct sum of U1, U2, ..., Un

if every element v ∈ V can be written in the unique way as v = u1 + u2 +
...+ un, ui ∈ Ui.

Remark 4.16 Let V be any vector space over field F . Then V itself and
subset of V consisting of 0̄ vector only are the trivial subspace of V . They
are improper subspace. For example let V = {(α1, α2, α3)|α1, α2, α3 ∈ F}
and W = {(α1, α2, 0)|α1, α2 ∈ F}. Then W is a subspace of V
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Linear Independent and Spaces:

Definition 4.17 Let V be a vector space over F and if v1, v2, ..., vn. Then
any element of the form α1v1 + α2v2 + ... + αnvn where αi ∈ F is a linear
combination over F of v1, v2, ..., vn.

Definition 4.18 Let V be a vector space over F and S be any non-empty
subset of V . Then the linear span of S, L(S) is the set of all linear combi-
nation of finite sets of element of S. (i.e.) L(S) = {α1v1 + α2v2 + ..... +
αnvn|v1, v2, ..., vn is an arbitrary finite subset of S and α1, α2, ..., αn is any
arbitrary finite subset of F}.

Lemma 4.19 L(S) is a subspace of V .

Lemma 4.20 If S, T are the subset of V then,

1. S ⊂ T ⇒ L(S) ⊂ L(T ),

2. L(S ∪ T ) = L(S) ∪ L(T ),

3. L(L(S)) = L(S).

The vector space V is said to be finite dimensional over F if there is a finite
subset S in V such that V = L(S).

Example 4.21 Let V = F (3) = V3(f) = {(α1, α2, α3)|α1, α2, α3 ∈ F}. Let
S = {(1, 0, 0)}; L(S) = {(α, 0, 0)|α ∈ F} ⊂ V .

Example 4.22 V = F (3); S = {(1, 0, 0), (0, 1, 0)}. L(S) = {(α1, α2, 0)|α1, α2 ∈
F}.

Example 4.23 Let V = F (3) and S = {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. Then
L(S) = V .

Example 4.24 V = α1v1 + ... + αnvn. Let v = (a, b, c) ∈ F (3) = V .
(a, b, c) = a(1, 0, 0) + b(0, 1, 0) + c(0, 0, 1) ⇒ (a, b, c) ∈ L(S) ⇒ V ⊂ L(S),
but L(S) ⊂ V. ∴ L(S) = V .

Definition 4.25 If V is a vector space and if v1, v2, ..., vn are in V . We say
that they are linearly dependent over F if there exist element λ1, λ2, ..., λn

in F not all of them zero(0) such that λ1v1 + ...+ λnvn = 0. If the vectors
are not linearly dependent over F they are said to be linearly independent.

Remark 4.26 Two vectors are linearly dependent one of them will be the
scalar multiple of other.
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Example 4.27 In the vector space F (n) = Vn(F ) = {(α1, α2, ..., αn)}. Then
the vector space S = {e1, e2, ..., en} where e1 = {1, 0, ..., 0}; e2 = {0, 1, 0, ..., 0};
...; en = {0, 0, ..., 1} is linearly independent. Let λ1, λ2, ..., λn ∈ F . Then
λ1e1+λ2e2+...+λnen = 0 ⇒ λ1(1, 0, ..., 0)+λ2(0, 1, ..., 0)+...+λn(0, 0, ..., 1) =
0 ⇒ (λ1, 0, ..., 0) + (0, λ2, ..., 0) + (0, 0, ..., λn) = 0 ⇒ (λ1, λ2, ..., λn) = 0 ⇒
λ1 = 0, λ2 = 0, ..., λn = 0.

Remark 4.28 If the set of vector S = {v1, v2.....vn} is linearly independent
then none of the vector v1, v2, ..., vn be ~0.

Example 4.29 Show that the set S = {(1, 2, 4), (1, 0, 0), (0, 1, 0)(0, 0, 1)} is
a linearly dependent subset of vector space R(3) where R is the field of Real
numbers.
Solution: Let λ1 = 1, λ2 = −1, λ3 = −2, λ4 = −4. Then 1(1, 2, 4) +
(−1)(1, 0, 0)+(−2)(0, 1, 0)+(−4)(0, 0, 1) = (1, 2, 4)+(−1, 0, 0)+(0,−2, 0)+
(0, 0, 4) = (0, 0, 0). ∴ Given set is linearly dependent.

Lemma 4.30 If v1, v2, ..., vn are linearly independent then every element in
their linear span has a unique representation in the form, λ1v1 +λ2v2 + ...+
λnvn with λi ∈ F .

Result 4.31 If v1, v2, ..., vn ∈ V then either they are linearly independent
or some vk is the linear combination of the preceding one’s. If V is a finite
dimensional vector space then it contains a finite set v1, v2, ..., vn of linearly
independent elements whose linear span is V .

Definition 4.32 Basis: A subset S of a vector space V is called a basis
of V if S consists of linearly independent elements and V = L(S). Let set
S consisting of vectors e1 = (1, 0, 0), e2 = (0, 1, 0), e3 = (0, 0, 1) is a basis of
F (3).

Result 4.33 1. If V is a finite dimensional vector space and if v1, v2, ..., vm

is span V then some subsets of v1, v2, ..., vm forms a basis of V .

2. If v1, v2, ..., vm is a basis of V over F if w1, w2, ..., wm in V are linearly
independent over F then m ≤ n.

3. If V be a finite dimensional vector space over F then any two ba-
sis of V have the same number of elements. For example, S1 =
{(1, 0, 0), (0, 1, 0), (0, 1, 1)} and S2 = {(1, 0, 0), (1, 1, 0), (1, 1, 1)} are
two basis of the vector space F(3).

4. F (n) ∼= F (m) iff n = m.

5. If V be a finite dimensional vector space over a field F then V ∼= F (n)

for a unique integer n, infact n is the number of elements in any basis
V over F .
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Definition 4.34 Dimension: The dimension of V over F is the number
of elements in any basis of V over F . For example, dim(F(3)) = 3 and
dim(F(4)) = 4.

Result 4.35 Any two finite dimensional vector space over F of the same
dimension are isomorphic. dimF (V1) = dim(V1) = n and dimF (V2) =
dim(V2) = n ⇒ V1

∼= V2.

Definition 4.36 Dual space: The set of all homomorphism of U into V
will be written as Hom(U, V ).

Lemma 4.37 Let V,W be any two vector space over the field F . Hom(V,W )
be the set of all vector space homomorphisms of V into W . Then Hom(V,W )
is a vector space over F . Let S, T ∈ Hom(V,W ). Define V (S + T ) =
V S + V T under this operation Hom(V,W ) is a vector space.

Result 4.38 1. If V and W are of dimensions m and n respectively over
F then Hom(V,W ) is of dimension mn over F . If dimF (V ) = m then
dimF (Hom(V, V )) = dimF (V )dimF (V ) = m ·m = m2.

2. dimF (Hom(V, F )) = dimF (V ) × dimF (V ) = m× 1 = m.

3. dimF (Hom(Hom(V, F ), F )) = dimF (Hom(m,F )) = m.

Definition 4.39 If V is a vector space, then its dual space is Hom(V, F ),
We shall denote this as by V̂ .

Definition 4.40 Any elements of V̂ is called a linear functional on V into
F

Remark 4.41 if V is not finite dimensional V̂ is usually too large and
would be of.

Note:
̂̂
V = Hom(V̂ , F ).

Result 4.42 1. If V is a finite dimensional an v 6= 0 in V then there is
an element F ∈ V̂ such that F (v) = 0.

2. If V is a finite dimensional vector space then there is an isomorphism

of V onto
̂̂
V .

Definition 4.43 if W is a subspace of V̂ then annihilator of W,A(W ) =
{f ∈ V̂ /f(W ) = 0 ∀w ∈ W}.

Result 4.44 1. A(w) is a subspace of V̂ .
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2. dim(A(w) = dim(V ) − dim(W ).

3. V̂ /A(W ) ∼= Ŵ .

4. A(A(W )) = W .

Linear Transformation:
We know that Hom(V,W ), the set of all vector space homomorphisms of V
into W is a vector space over the field F . In this section we are very much
interested on Hom(V, V ).

Definition 4.45 An associative ring A is said to be an algebra over F if A
is a vector space over a field F such that a, b ∈ A and α ∈ F , α(ab) = (αa)b.

Remark 4.46 Every algebra A over a field F is a vector space over a field
F . Is the converse true?

Result 4.47 Hom(V, V ) is an algebra over F .
Proof: Let T1, T2 ∈ Hom(V, V ). Define + and · as follows, T1 +T2 : V → V
by v(T1+T2) = vT1+vT2 and T1 ·T2 : V → V by v(T1 ·T2) = (vT1)T2 ∀v ∈ V .
We shall first prove that Hom(V, V ) is a ring. Let α, β ∈ F and v1, v2 ∈ V ,

(αv1 + βv2)(T1 + T2) = (αv1 + βv2)T1 + (αv1 + βv2)T2

= (αv1)T1 + (βv2)T1 + (αv1)T2 + (βv2)T2

= α(v1T1) + β(v2T1) + α(v1T2) + β(v2T2)

= α(v1T2) + β(v2T1 + v2T2)

= α(v1(T1 + T2)) + β(v2(T1 + T2))

∴ T1 + T2 ∈ Hom(V, V ) ⇒ + is closed.
Let T1, T2, T3 ∈ Hom(V, V ). Then T1+(T2+T3) = (T1+T2)+T3 ∀T1, T2, T3 ∈
Hom(V, V ) ⇒ + is Associative.
0 : V → V defined by v0 = 0 ∀v ∈ V serve as additive identity element. For
0 + T1 = T1 + 0 = T1 ∀T1 ∈ Hom(V, V ).
Inverse of T1 is −T1 defined by, v(−T1) = −(vT1) ∀v ∈ V . Since T1+(−T1) =
(−T1 + T1) = 0 for v(T1 + (−T1)) = vT1 + v(−T1) = vT1 + (−vT1) = 0.
Similarly v(−T1 + T1) = 0 ⇒ T1 + (−T1) = (−T1) + T1 = 0.
v(T1 + T2) = vT1 + vT2 [vT1, vT2 ∈ V and (V,+) is abelian] =vT2 + vT1 =
v(T2 + T1) ⇒ T1 + T2 = T2 + T1. ∴ + is commutative.
Hence (Hom(V, V ),+) is abelian group. Now,

(v1 + v2)(T1 · T2) = ((v1 + v2)T1) · T2

= (v1T1 + v2T1) · T2

= (v1T1)T2 + (v2T1)T2

= v1(T1 · T2) + v2(T1 · T2)
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(αv1)(T1 · T2) = ((αv1)T1) · T2

= α(v1T1) · T2 = α((v1T1)T2)

= α(v1(T1 · T2))

∴ T1 · T2 ∈ Hom(V, V ). Clearly T1(T2 · T3) = (T1 · T2)T3 ∀T1, T2, T3 ∈
Hom(V, V ). ∴ · is associative.
T1 · (T2 +T3) = T1 ·T2 +T1 ·T3; (T1 +T2) ·T3 = T1 ·T3 +T2 ·T3 ∀T1, T2, T3 ∈
Hom(V, V ). · is distributive over F . ∴ (Hom(V, V ),+, ·) is a Ring.
Now, let T1 · T2 ∈ Hom(V, V ). To Prove: α(T1 + T2) = αT1 + αT2.

v(α(T1 + T2)) = α(v(T1 + T2))

= α(vT1 + vT2)

= α(vT1) + α(vT2)

= v(αT1) + v(αT2)

= v(αT1) + v(αT2),∀v ∈ V

⇒ α(T1 + T2) = αT1 + αT2, ∀α ∈ F and T1, T2 ∈ Hom(V, V ).

To prove:(α+ β)T1 = αT1 + βT1.

Let v ∈ V, v((α+ β)T1) = (α+ β)(vT1)

= v(αT1) + β(vT1)

= v(αT1) + v(βT1)

= v(αT1 + βT1)

⇒ (α+ β)T1 = αT1 + βT1, ∀α, β ∈ F and T1 ∈ Hom(V, V ).

To Prove: α(βT1) = (αβ)T1.

v(α(βT1)) = α(v(βT1))

= α(β(vT1))

= αβ(vT1)

= v(αβ)T1

⇒ α(βT1) = (αβ)T1 ∀α, β ∈ FandT1 ∈ Hom(V, V ).

v(1·T1) = 1·(vT1) = vT1 ⇒ 1·T1 = T1 ∀T1 ∈ Hom(V, V ). Hence Hom(V, V )
is a vector space over a field F . Let v ∈ V,

v(α(T1T2)) = α(v(T1T2))

= α((vT1)T2)

= (vT1)(αT2)

= (vT1)(αT2)

⇒ α(T1T2) = T1(αT2).
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Now,

v((αT1)T2) = (v(αT1))T2

= α((vT1))T2

= α(vT1T2)

= v(α(vT1T2))

⇒ (αT1)T2 = α(T1T2)

α(T1T2) = (αT1)T2 = T1(αT2), α ∈ F and T1, T2 ∈ Hom(V, V ).

∴ Hom(V, V ) is an algebra over F .

Remark 4.48 For convenient we shall write Hom(V, V ) as A(V ). When-
ever we want to emphasis the role of field. We shall denote it by AF (V ).

Definition 4.49 A linear transformations on V over F is an element of
AF (V ). (i.e.) A linear transformations is a vector space homomorphism of
V onto itself.

Remark 4.50 We shall refer A(V ) as a ring or algebra of linear transfor-
mation on V .

Lemma 4.51 If A is an algebra with unit element over a field F . Then
A is isomorphic to a sub-algebra of A(V ) for some vector space V over
F .(Analogue of Cayley’s theorem for algebra)
Proof: Since A is an algebra over F . It must be a vector space over F .
To prove: A is isomorphic to sub-algebra of A(V ), for some vector space V .
Since A is a ring as well as a vector space, we choose V = A. Let a ∈ A,
define Ta : V (A) → V (A) by vTa = va ∀v ∈ V . Claim Ta is a linear trans-
formation on V . (i.e.) Ta is a vector homomorphism. Let v1, v2 ∈ V and
α ∈ F
Now, (v1 + v2)Ta = v1 = v1a+ v2a = v1Ta + v2Ta....... (1)
(αv1)Ta = (αv1)a = α(v1a) = α(v1Ta)........(2)
From (1)and (2), Ta ∈ Hom(V, V ) = A(V ). (i.e.) Ta is a linear transforma-
tion on V . Hence the claim.
Define a mapping ψ : A → A(V ) by aψ = Ta ∀a ∈ A. Let a, b ∈ A and
α ∈ F . First, to prove that Ta+b = Ta + Tb. For v ∈ V, vTa+b = v(a+ b) =
va+vb = vTa+vTb ∀v ∈ V ⇒ Ta+b = Ta+Tb. Next, to prove that Tαa = αTa.
For any v ∈ V, vTαa = v(αa) = α(va) = α(vTa) ∀v ∈ V ⇒ Tαa = αTa. From
Ta+b = Ta + Tb we have, ⇒ (a+ b)ψ = aψ + bψ.........(3)
From Tαa = αTa ⇒ (αa)ψ = α(aψ)........ (4)
From (3) and (4), ψ is a homomorphism of A into A(V ).
To prove ψ is 1 − 1, it is enough to prove that Kerψ = {0} where 0 is the
identity element in A(V ). Let a ∈ Kerψ
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⇒ aψ = 0 ∀a ∈ A

⇒ Ta = 0 ∀a ∈ A

⇒ vTa = 0 ∀a ∈ A

⇒ va = 0, ∀a ∈ A,∀v ∈ V

⇒ ea = 0 [∵ V = A(V ) contains the unit element]

⇒ a = 0

∴ Kerψ = {0}

∴ ψ is 1 − 1, clearly ψ is onto. Hence ψ is an isomorphism of A onto A(V ).
Hence A is isomorphic to some algebra of A(V ).

Lemma 4.52 Let A be an algebra with element over F and suppose that A
is of dimension of m over F then every element in A satisfies some non-
trivial polynomials f(x) of degree almost m.
Proof: Given dim A = m. ∴ Any set of m + 1 elements in A is linearly
dependent. Let a ∈ A. Then e, a, a2, a3, ..., am are linearly dependent. ∴

there exists scalar α0, α1, ..., αm ∈ F , not all zero such that α0e + α1a +
α2a

2 + ...+ αma
m = 0(i.e.)α0 + α1a+ α2a

2 + ...+ αma
m = 0....... (1)

Let f(x) = α0 + α1x + α2x
2 + ... + αmx

m ∈ F [x]. ∴ By (1) a satisfies the
polynomials f(x) ∈ F [x] of degree almost m. Since a is arbitrary in A, every
element in A satisfy the polynomial of degree at most m.

Theorem 4.53 If V be an n dimensional vector space over a field F , given
any element T in A(V ) there exists a non-trivial polynomial q(x) of degree
almost n2 such that q(T ) = 0.
Proof: Given T ∈ Hom(V, V ) = A(V ). But dim(A(V )) = dim(Hom(V, V )) =
dim(V ) · dim(V ) = n × n = n2. Since A(V ) = Hom(V, V ) is an algebra of
dimension n2, let T ∈ A(V ). By the above lemma, there exists a non-trivial
polynomial q(x) ∈ F [x] of degree at most n2. Hence q(T ) = 0.

Definition 4.54 A non trivial polynomial of lowest degree satisfied by T in
A(V ) is called a minimal polynomial of T .

Remark 4.55 If p(x) is a minimal polynomial of T and if T satisfies h(x)
also then p(x)/h(x) (or) Show that the minimal polynomial of T ∈ A(V )
divides all other polynomial satisfied by T .
Proof: Let p(x) be the minimal polynomial for T then p(T ) = 0 and p(x)
is of least degree. Given T also satisfies h(x), then h(T ) = 0........ (1)
By applying division algorithm to p(x) and h(x), h(x) = p(x) · q(x) + r(x),
either r(x) = 0 or deg(r(x)) < deg(p(x))....... (2)
From (1), 0 = h(T ) ⇒ p(T )q(T ) + r(T ) = 0 ⇒ r(T ) = 0[∵ p(T ) = 0]. If
deg(r(x)) < deg(p(x)), we can come to a conclusion that r(x) satisfies T
whose degree is less than degree of p(x). ∴ r(x) = 0. From (2), h(x) =
p(x)q(x)(∵ r(x) = 0) ⇒ p(x)/h(x). Hence the remark.
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Definition 4.56 Let A,B be any algebra’s over F . A map T : A → B is
called a homomorphism if,

1. (a1 + a2)T = a1T + a2T ,

2. (a1a2)T = a1Ta2T ,

3. (αa1)T = α(a1T ).

If this T is 1 − 1, we say that T is an isomorphism.
Ker T = {a ∈ A|aT = 0, identity element in B}.

Definition 4.57 An element T ∈ A(V ) is called a right invertible if there
exists an element S ∈ A(V ) such that TS=1. ( 1 is the unit element of
A(V ))

Definition 4.58 An element T ∈ A(V ) is called a left invertible if there
exists an element S ∈ A(V ) such that ST = 1.

Definition 4.59 An element T ∈ A(V ) is said to be invertible (or) regular
if it is both right and left invertible (i.e.) there exists an element S ∈ A(V )
such that TS = ST = 1. We write S as T−1.

Remark 4.60 If T is both right and left invertible and if TS = UT = 1,
then S and U are unique.

Definition 4.61 An element T ∈ A(V ) which not regular is called singular.

Remark 4.62 It is quite possible that an element in A(V ) is right invertible
but not invertible.

Example 4.63 Let F be the field of real numbers. Let V = F [x] be the set
of all polynomials in x. Define S ∈ A(V ) as q(x)T = d

dx
q(x). Let T ∈ A(V )

as q(x)T =
∫ x

1 q(x)dx. Here TS = 1 but ST 6= 1. Now,

q(x)TS = (q(x)T )S

= (

∫ x

1
)S

=
d

dx
(

∫ x

1
q(x)dx)

= (q(x)) · 1

= q(x)

⇒ TS = 1

∴ T is right invertible but not invertible.
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Remark 4.64 If V is finite dimensional over F then an element in A(V )
which is right invertible is invertible.

Theorem 4.65 If V is finite dimensional over F , then T ∈ A(V ) is invert-
ible iff the constant terms of the minimal polynomial for T is not zero.
Proof: Let p(x) = α0 +α1x+α2x

2 + ...+αkx
k be the minimal polynomial

for T . Assume that α0 6= 0 and p(T ) = 0. To prove: T is invertible. Since
p(x) is a minimal polynomial for T.

p(T ) = 0 ⇒ α0 + α1T + .....+ αkT
k = 0........(1)

α0 = −(α1T + ...+ αkT
k)

α0 = −(α1 + α2T + ...+ αkT
k−1)T

α0 = T (−α1 − α2T + ...− αkT
k−1)

⇒ 1 = T (
1

α0
(−α1 − α2 − ...− αkT

k−1))

1 = T (−
1

α0
(α1 + α2 + ...+ αkT

k−1))

Let S = − 1
α0

(α1 + α2 + ...+ αkT
k−1). Clearly, S 6= 0 and TS = 1 similarly

ST = 1. Thus ST = TS = 1. T is invertible. Conversely, Suppose that T
is invertible. To prove: α0 6= 0. Suppose not, α = 0. From(1),

α1T + α2T
2 + ...+ αkT

k = 0

(α1 + α2T + ...+ αkT
k−1)T = 0.

Since T is invertible, T−1 exist. Multiplying the above relation t−1,

⇒ ((α1T + α2T
2 + ...+ αkT

k)T )T−1 = 0T−1 = 0

⇒ α1T + α2T
2 + ...+ αkT

k−1 = 0.........(2)

Let q(x) = α1x + ... + αkx
k−1. By(2), q(T ) = 0. (i.e.) T satisfy the

polynomial q(x) of degree k − 1, which is a contradiction to the degree of
minimal polynomial for T , which is k ⇒⇐ shows that α0 6= 0.

Corollary 4.66 If V is finite dimensional over F and if T ∈ A(V ) is in-
vertible then T−1 is a polynomial expression in T over F .
Proof: Let p(x) = α0 +α1x+α2x

2 + ...+αkx
k with αk 6= 0 be the minimal
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polynomial of T .

p(T ) = 0 ⇒ α0 + α1T + α2T
2 + ...+ αkT

k = 0

⇒ α0 = −(α1T + α2T
2 + ...+ αkT

k)

α0 = (−α1)T + (−α2)T 2 + ...+ (−αk)T k

1 = (−
α1

α0
)T + (−

α2

α0
)T 2 + ...+ (−

αk

α0
)T k

1 = ((−
α1

α0
) + (−

α2

α0
)T + ...+ (−

αk

α0
)T k−1)T

1 · T−1 = ((−
α1

α0
) + (−α2/α0)T + ...+ (−

αk

α0
)T k−1)T · T−1

T−1 = β1 + β2T + ...+ βkT
k−1

where β1 = (−α1

α0
), ..., βk = (−αk

α0
). ∴ T−1 is a polynomial expression in T

over F .

Corollary 4.67 If V is a finite dimensional vector space over a field F
and if T ∈ A(V ) is singular then there exists S 6= 0 in A(V ) such that
ST = TS = 0.
Proof: Let p(x) = α0 + α1x + α2x

2 + ... + αkx
k be a minimal polynomial

of T over F . (i.e.) p(T ) = 0 ⇒ α0 + α1x + α2x
2 + ... + αkx

k = 0. Since T
is singular (i.e.) T is non-invertible by Theorem 4.65, α0 = 0. ∴ α1T +
α2T

2 + ...+ αkT
k = 0 ⇒∴ (α1 + α2T + ...+ αkT

k−1)T = 0........(1)
Let S = α1 +α2T + ...+αkT

k−1thenS 6= 0 (∵ α1 +α2x+α3x
2 + ...+αkx

k−1

is of lower degree than p(x)). From(1), ST = 0. Similarly TS = 0. ∴ ST =
TS = 0, where S 6= 0.

Corollary 4.68 If V is a finite dimension over F and if T ∈ A(V ) is right
invertible then it is invertible.
Proof: Given T ∈ A(V ) is right invertible. Then there exists U ∈ A(V )
such that TU = 1........(1)
To prove: T is invertible. Suppose T is not invertible. (i.e.) T is sin-
gular, then by Corollary 4.67, there exists S 6= 0 in A(V ) such that
ST = TS = 0.........(2)
From (1), TU = 0

⇒ S(TU) = S · 1

⇒ (ST )U = S

⇒ 0 · U = S by(2)

⇒ S = 0

⇒⇐ S 6= 0

This contradiction shows that T is invertible.
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Theorem 4.69 If V is finite dimensional over F , T ∈ A(V ) is singular iff
v 6= 0 in V such that vT = 0.
Proof: Assume that T is singular. By Corollary 4.67 there exists S 6= 0 ∈
A(V ) such that ST = TS = 0....... (1)
Since S 6= 0 in A(V ), there exists w ∈ V such that wS 6= 0. Let v = wS
then v 6= 0 in V, vT = (wS)T = w(ST ) = w0̄ = 0 by(1) ⇒ vT = 0, v 6= 0. ∴

There exists v 6= 0 in V such that vT = 0. Conversely, suppose that there
exists v 6= 0 in V such that vT = 0. To prove: T is singular. Suppose not,
T is invertible. Then there exists U ∈ A(V ) such that UT = TU = 1. Now,
TU = 1 ⇒ v(TU) = v · 1....... (2)
v(TU) = (vT )U = 0 · U = 0 → (3)
From (2) and (3), v = 0 ⇒⇐ to v 6= 0. ∴ T is singular.

Definition 4.70 Let T ∈ A(V ), then (range of the linear transformation
T ) Range of T = {vT/v ∈ V } = V T

Remark 4.71 (1) Range of T is a subspace of V
Proof: Let u, v ∈ V T, α, β ∈ F . Now (αu + βv)T = (αu)T + (βv)T =
α(uT )+β(vT ) ∈ V T ⇒ αu+βv ∈ V T. ∴ V T is a subspace of V. ∴ Range
of T is a subspace of V .
(2) If V T = V then T is onto.

Theorem 4.72 If V is finite dimensional over F , then T ∈ A(V ) is regular
iff T maps V onto V .
Proof: Suppose T is regular. To prove: T is onto. Let v ∈ V consider
vT−1. Now, (vT−1)T = v(t−1T ) = v · 1 = v ⇒ v = (vT−1)T, v ∈ V . (i.e.)
every element v ∈ V has pre-image vT−1 under T in V. ∴ T is onto.
Conversely, suppose that T is onto. To prove: T is regular. Suppose not,
T is singular, we must show that T is not onto. Since T is singular, by
Theorem 4.69, there exists v1 6= 0 in V such that v1T = ~0 (~0 : V → V ).
Suppose α1v1 = 0 ⇒ α1 = 0 ⇒ v1is linearly independent. Since {v1} is
linearly independent in the finite dimensional vector space. Since V is finite
dimensional, we can find vectors v2, v3, ..., vn such that {v1, v2, v3, ..., vn}
form a basis of V where dim(V ) = n. ∴ V T is generated by w1 = v1T,w2 =
v2T, ..., wn = vnT . Since w1 = v1T = 0, V T is spanned by v2T, v3T, ..., vnT .
(i.e.) V T is spanned by w2, w3, ..., wn ∴ dim(V T ) ≤ (n − 1) < n =
dim(V ) ⇒ dim(V T ) < dim(V ) ⇒ V T ⊂ V ⇒ V T 6= V ⇒ T is not onto.

Note 4.73 The above theorem can be replaced as T is regular ⇔ dim(V T ) =
dim(V ) (i.e.) V T = V .

Remark 4.74 The above theorem suggest that we could use dim(V T ) not
only as a test for regularity but even as a measure of degree of singularity
for a given T ∈ A(V ).
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Definition 4.75 Rank of T : If V is finite dimensional over F . The rank
of T is dimensional of V T . The rank of T over F , it is denoted by r(T )
(i.e.) dim(V T )=Rank of T = r(T ).

Remark 4.76 1. If r(T ) = dimV . Then T is regular,

2. If r(T ) = 0. Then T = 0.
Proof: (1) Given r(T ) = dim(V ) ⇒ dim(V T ) = dim(V ) ⇒ V T = V ⇒ T
is onto ⇒ T is regular.
(2) Suppose r(T ) = 0 ⇒ dim(V T ) = 0 ⇒ V T = {0} ⇒ {vT |v ∈ V } =
{0} ⇒ {vT = 0,∀v ∈ V } = 0 ⇒ T = ~0.

Lemma 4.77 If V is finite dimensional vector space over F . Then S, T ∈
A(V )

1. r(ST ) ≤ r(T )

2. r(TS) ≤ r(T ) and

3. r(ST ) = r(TS) = r(T ) for S regular in V .

Proof: (1)V S ⊂ V ⇒ (V S)T ⊂ (V )T ⇒ V (ST ) ⊂ V Tdim(V (ST )) ≤
dim(V T ) ⇒ r(ST ) ≤ r(T ).
(2)r(T ) = m = dim(V T ), where V T is a subspace of V . Let{w1, w2, ..., wm}
be basis of V T ⇒ dim(V T ) = m. Now, w1S,w2S, ..., wmS generate (V T )S ⇒
dim(V (TS)) ≤ m = r(T ). (i.e.) r(TS) ≤ r(T ). From (1) and (2),
r(ST ) ≤ r(T )andr(TS) ≤ r(S) ⇒ r(ST ) ≤ min{r(T ), r(S)}.
(3) Given S is regular

S is onto ⇒ V S = V

(V S)T = V T

V (ST ) = V T

⇒ dim(V (ST )) = dimV T

⇒ r(ST ) = r(T )........(i)

Let r(T ) = m, V T = m. Let {w1, w2, ..., wm} be a basis of V T . Now,
{w1S,w2S, ..., wmS} generate (V T )S = V (TS). Claim: {w1S,w2S, ..., wmS}
is linearly independent for if α1(w1S) +α2(w2S) + ...+αm(wmS) = 0 where
αi ∈ F . Then,

α1w1S + α2w2S + ...+ αmwmS = 0

⇒ (α1w1 + α2w2 + ...+ αmwm)S = 0.

Since S is regular, S−1 exists. Now,

(α1w1 + α2w2 + ...+ αmwm)S · S−1 = 0

α1w1 + α2w2 + ...+ αmwm = 0.
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⇒ αi = 0 ∀ i [∵ {w1, w2, ..., wm} are linearly independent]. Hence the claim.
(i.e.) {w1S,w2S, ..., wmS} is a basis of V (TS) ⇒ dim(V (TS)) = m ⇒
r(T ) ⇒ r(TS) = r(T )....... (ii)
From (i) and (ii) r(ST ) = r(TS) = r(T ) for S regular in V .

Corollary 4.78 if T ∈ A(V ) and if S ∈ A(V ) is regular then r(T ) =
r(STS−1).
Proof: r(STS−1) = r((ST )(S−1)) = r(S−1(ST )) = r((S−1S)T ) = r(T ).

Remark 4.79 S, T ∈ A(V ) and if S is regular then STS−1 and T have
same minimal polynomial.

Characteristic roots:

Definition 4.80 If T ∈ A(V ), then λ ∈ F is called characteristics roots
(or Eigen value of T ) if λ− T is singular.

Theorem 4.81 The element λ ∈ F is a characteristics roots of T ∈ A(V )
iff for some v 6= 0 in V, vT = λv.
Proof: Suppose λ is a characteristic root of T . Then λ − T is singular.
By Theorem 4.69, there exists a v 6= 0 in V such that v(λ − T ) = 0 ⇒
λv− vT = 0 ⇒ λv = vT . Conversely, assume that there is a vector v 6= 0 in
V such that vT = λv ⇒ λv − vT = 0 ⇒ v(λ − T ) = 0. By Theorem 4.69,
λ− T is singular. ∴ λ is the characteristic root of T .

Lemma 4.82 If λ ∈ F is a characteristic root of T ∈ A(V ), then for any
polynomial q(x) ∈ F [x], q(λ) is a characteristic root of q(T ).
Proof: Let q(x) = α0x

m + α1x
m−1 + ... + αm. Suppose λ ∈ F is a char-

acteristic root of T ∈ A(V ). Then by Theorem 4.81, there is a non-zero
vector v ∈ V such that vT = λv ........(1)
To Prove: q(λ) is characteristic root of q(r), it is enough to prove that
vq(T ) = q(λ)v, v 6= 0 in V . Now vT 2 = (vT )T = (λv)T = λ(vT ) = λ(λv) =
λ2v. Similarly, vT 3 = λ3v. In general, vT k = λkv for all positive integer k.
Now,

v(q(T )) = v(α0T
m + α1T

m−1 + ...+ αm)

= v(α0T
m) + v(α1T

m−1) + ...+ v(αm)

= α0(vTm) + α1(vTm−1) + ...+ αmv

= α0(λmv) + α1(λm−1v) + ...+ αmv

= (α0λ
m + α1λ

m−1 + ...+ αm)v

= (q(λ))v.

v(q(T )) = (q(λ))v ∀v 6= 0 in V. ∴ q(λ) is a characteristic root of q(T ).
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Theorem 4.83 If λ ∈ F is a characteristic root of T ∈ A(V ), then λ is a
root of minimal polynomial of T . In particular, T only has a finite number
of characteristic root in F .
Proof: Let p(x) = α0x

m + α1x
m−1 + ... + αm be the minimal polynomial

of T over F . Then p(T ) = 0 (i.e.) α0T
m + α1T

m−1 + ...+ αm.....(*)
Since λ is a characteristic root of T . Then by Theorem 4.81, there is v 6= 0
in V such that vT = λv......... (1)
We have to show that p(λ)v = vp(T ). Now, vT 2 = (vT )T = (λv)T =
λ(vT ) = λ(λv) = λ2v. Similarly vT 3 = λ3v. In general vT k = λkv (2) for
all positive integer k........(2)

v(p(T )) = v(α0T
m + α1T

m−1 + ...+ αm)

= v(α0T
m) + v(α1T

m−1) + ...+ v(αm)

= α0(vTm) + α1(vTm−1) + ...+ αmv

= α0(λmv) + α1(λm−1v) + ...+ αmv

= (α0λ
m + α1λ

m−1 + ...+ αm)v

= (p(λ))v.........(3)

p(λ)is a characteristic root of p(T ). (3) ⇒ v · 0 = p(λ)v (by *) ⇒ p(λ) = 0.
∴ λ is the root of the minimal polynomial of T and degree of p(x) ≤ n2

(by Theorem 4.53) where n = dimF (V ). ∴ T has only a finite number of
characteristic root in F .

Lemma 4.84 If T, S ∈ A(V ) and if S is regular, then T and STS−1 has
the same minimal polynomial.
Proof: First we shall show that for any polynomial q(x) ∈ F [x], q(STS−1) =
S(q(T ))S−1....... (1)
For let q(x) = α0+α1x

1+α2x
2+...+αmx

m. Now, (STS−1)2 = (STS−1)(STS−1) =
(ST )(S−1S)(TS−1) = (ST )(1)(TS−1) = STTS−1 = ST 2S−1. Similarly we
get (STS−1)k = ST kS−1, for every k=1,2,3..... ......(2)

q(STS−1) = α0 + α1(STS−1) + α2(STS−1)2 + ...+ αm(STS−1)m

= α0 + α1(STS−1) + α2(ST 2S−1) + ...+ αm(STmS−1)

= S(α0 + α1T + α2T
2 + ...+ αmT

m)S−1

q(STS−1) = Sq(T )S−1........(3)

Let p(x) be the minimal polynomial of T over F . Then p(T ) = 0........ (4)
Now by equation (3), p(STS−1) = Sp(T )S−1 = S(0)S−1 = 0 ⇒ STS−1

satisfies the minimal polynomial p(x) of T . Suppose Let f(x)be the poly-
nomial of T such that deg(f(x)) < deg(p(x)) and f(STS−1) = 0. Again by
eqn (3), Sf(T )S−1 = f(STS−1) = f(0) = 0 ⇒ Sf(T )S−1 = 0 ⇒ f(T ) = 0
[pre and post multiply by S and S−1]. T satisfy the polynomial f(x) and
deg(f(x)) < deg(p(x)), which is contradiction to the minimality of p(x).
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Consequently, p(x) is the minimal polynomial of STS−1 also let g(x) be
the minimal polynomial of STS−1 (i.e.)Sg(T )S−1 = 0 ⇒ Sg(T )S−1 =
0 ⇒ g(T ) = 0. (i.e) T satisfies the polynomial of g(x). Let h(x) be the
polynomial of degree less than the degree of g(x) and h(x) = 0. Again
h(STS−1) = Sh(T )S−1 = 0. (i.e.) STS−1 satisfies the polynomial h(x)
and deg(h(x)) < deg(g(x)), which is contradiction. Consequently, g(x) is a
minimal polynomial of T also. Hence the theorem.

Definition 4.85 Let λ be a characteristic root of T ∈ A(V ) the element
v 6= 0 in V is called characteristic vector of T belonging to λ if vT = λv.
(Theorem 4.81 guarantees the existence of such a characteristic vectors in
V corresponding to λ

Theorem 4.86 If λ1, λ2, ..., λk are distinct characteristic roots of T ∈ A(V )
and v1, v2, ..., vk are characteristics vectors of T belonging λ1, λ2, ..., λk re-
spectively then v1, v2, ..., vk are linearly independent over F .
Proof: Case(i): If k = 1 then there is only one characteristic vector v1 6= 0
in V which is linearly independent.
Case(ii): If k > 1, To prove: v1, v2, ..., vk are linearly independent. Suppose
the characteristic vector v1, v2, ..., vk are linearly dependent over F . Then
there exists scalars α1, α2, ..., αk not all zero in F such that α1v1 + α2v2 +
... + αkvk = 0. Without loss of generality, let us assume that the shortest
relation with non-zero coefficients (by suitably renumbering)
β1v1 + β2v2 + ...+ βjvj = 0
where β1 = β2 = ... = βj 6= 0
Since λi’s are characteristic roots we have
viT = λivi, ∀i
By equation(1),

(β1v1 + β2v2 + ...+ βjvj)T = 0 · T

β1v1T + β2v2T + ...+ βjvjT = 0

β1(v1T ) + β2(v2T ) + ...+ βj(vjT ) = 0

β1λ1v1 + β2λ2v2 + ...+ βjλjvj = 0

(β1λ1)v1 + (β2λ2)v2 + ...+ (βjλj)vj = 0........(2)

λ1 × (1) ⇒ λ1β1v1 + λ2β2v2 + ...+ λ1βjvj = 0

(2) − (3) ⇒ (λ2 − λ1)β2v2 + (λ3 − λ1)β3v3 + ...+ (λj − λ1)βjvj = 0.........(4)

Now, (λj − λ1)βj 6= 0, i = 2, 3, ..., j (∵ λj − λ1 6= 0, i > 1 and βj 6= 0). (i.e.)
γ2v2 + γ3v3 + ...+ γjvj = 0....... (5)
where γ2 = λ2 − λ1 6= 0, γ3 = λ3 − λ1 6= 0, ..., γj = (λj − λ1) 6= 0 ⇒
v2, v3, ..., vj are linearly dependent. By relation (5) we have produced a
shorter relation than that of equation (1) between v1, v2, ..., vk ⇒⇐. This
contradiction proves that v1, v2, ..., vk are linearly independent. For example,
t ∈ V3(F ) number of characteristics root of T ≤ 3.
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Corollary 4.87 If T ∈ A(V ) and if dim(V ) = n then T can have at most
n distinct characteristic root in F .
Proof: Letλ1, λ2, ..., λm be the distinct characteristic root of T . To prove:
m ≤ n. Let v1, v2, ..., vm be the characteristic vector T belonging to the
characteristic roots λ1, λ2, ..., λm. By Theorem 4.86, v1, v2, ..., vm are lin-
early independent. Since the dim(V ) = n, the number of elements in any
linearly independent set in it will be less than or equal to n, m ≤ n.

Corollary 4.88 If T ∈ A(V ) and if dimF (V ) = n and if T has n distinct
characteristic root in F , then there is a basis of V over F which consist of
characteristic vector of T .
Proof: Let λ1, λ2, ..., λn be distinct characteristic roots of T . Let v1, v2, ..., vn

be the characteristics roots λ1, λ2, ..., λn. We first claim that v1, v2, ..., vn are
distinct for 1 ≤ i, j ≤ n. Suppose vi = vj ⇒ viT = vjT ⇒ λivi = λjvi ⇒
(λi − λj)vi = 0 ⇒ λi − λj = 0(∵ vi 6= 0) ⇒ λi = λj ⇒⇐ (Since λ1, λ2, ..., λn

distinct characteristic root). Hence v1, v2, ..., vn are distinct. By Theorem
4.86, v1, v2, ..., vn are linearly independent. Let v ∈ V , since dimF (V ) = n
any subset of n+ 1 vectors are linearly dependent. (i.e.) v1, v2, ..., vn, v are
linearly dependent. ∴ there exists scalars α1, α2, ..., αn, α not all zero such
that α1v1 + α2v2 + ...+ αnvn + αv = 0. In particular α 6= 0,

αv = −(α1v1 + α2v2 + ...+ αnvn)

v = −
1

α
(α1v1 + α2v2 + ...+ αnvn)

⇒ v = (−(α−1α1)v1 + (−α−1α2)v2 + ...+ (−α−1αn)vn)

⇒ v = β1v1 + β2v2 + ...+ βnvn where βi = −α−1αi, i = 1, 2, ..., n.

⇒ v ∈ L(S) ⇒ {v1, v2, ..., vn} spans V. ∴ {v1, v2, ..., vn} is a basis of V .

Canonical forms:
Triangular forms: Since the basis used at any time is completely at our
choice for a given linear transformation T . It is natural for as to seek a basis
in which the matrix of D will be a particular nice forms. Such nice forms
of matrices as canonical forms. In this section we are going to see one such
nice form called triangular form.

Definition 4.89 The linear transformations S, T ∈ A(V ) are said to be
similar if there exists an invertible element C ∈ A(V ) such that T = CSC−1.
The definition already defined interms of matrices as m2(T ) = Cm1C

−1 ⇒
A = CBC−1. Two matrices A,B ∈ Fn are similar if there exist an invertible
element C ∈ Fn such that B = CAC−1.

Remark 4.90 (1) The relation of A(V ) defined by similarity is an equiv-
alence relation. (i.e.) S ∼ T ⇒ S is similar to T ⇒ T = CSC−1. ∼
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is reflexive, symmetric and transitive. ∴ ∼ is an equivalence relation. The
equivalence class of an element in A(V ) under the relation similarity is called
the similarity class and is denoted by [S].
(2) For any two given linear transformations to determines whether on not
similar is not an easy one. Instead, we try to establish some kind of land-
mark in each similarity classes of one of these to set if the other is in it,
but this procedure is not feasible. To determine if two linear transformation
are similar, we need but compute a particular canonical form for each and
check if these are the same.

Definition 4.91 Let W be a subspace of a vector space V . W is said to be
invariant under T ∈ A(V ) if WT ⊂ W .

Lemma 4.92 If W ⊂ V is a invariant under T then T induces a linear
transformation T̄ on V/W defined by (v + w)T̄ = v +W . If T satisfied the
polynomial q(x) ∈ F [x] then so does T̄ . If p1(x) is a minimal polynomial of
T̄ over F and if p(x) is that for T then p1(x)/p(x).
Proof: Part I: Given T ∈ A(V ) = Hom(V, V ). (i.e.) T : V → V is a
homomorphism. Let V̄ = V/W = {v+W |v ∈ V }. Define v̄T̄ = (v+W )T̄ =
vT +W . Suppose v̄1 = v̄2, v̄1, v̄2 ∈ V/W

⇒ v1 +W = v2 +W

⇒ v1 = v2 ∈ W [∵ a+H = b+H ⇒ a− b ∈ H]

⇒ (v1 − v2)T ∈ WT

⇒ v1T − v2T ∈ WT

⇒ v1T +W = v2T +W

⇒ (v1 +W )T̄ = (v2 +W )T̄

⇒ v̄1T̄ = v̄2T̄

∴ T̄ is well defined.
Now,

(v̄1 + v̄2)T̄ = ((v1 +W ) + (v2 +W ))T̄

= (v1 + v2)T +W

= v1T + v2T +W

= (v1T +W ) + (v2T +W )

= (v1 +W )T̄ + (v2 +W )T̄

= v̄1T̄ + v̄2T̄
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(αv̄1)T̄ = (α(v1) +W )T̄

= (αv1 +W )T̄

= (αv1)T +W

= α(v1T ) +W

= α(v1T +W )

= α((v1 +W )T̄ )

= α(v̄1T̄ )

∴ T̄ defines linear transformation on V̄ .
Part II: Suppose that T satisfies q(x) = α0 +α1x+α2x

2 + ...+αkx
k ∈ F [x].

Then q(T ) = 0. (i.e.) α0 + α1T + α2T
2 + ......+ αkT

k = 0...... (1)
Claim: q(T ) = q(T̄ ) we prove that q(T̄ ) = 0. Let v̄ = v +W ∈ V/W = V̄

v̄T 2 = (v + w)T̄ 2

= vT 2 +W

= (vT )T +W

= (vT +W )T̄

= ((v +W )T̄ )T̄

= (v +W )T̄ 2 = (v̄)T̄ 2

⇒ T 2 = T̄ 2

similarly T k = T̄ k...........(2), for any k > 0
Consequently for any polynomial q(x) ∈ F [x], q(T ) = q(T̄ ), for

q(T̄ ) = α0 + α1T̄ + α2T̄
2 + ...+ αk(T̄ k)

= α0 + α1T̄ + α2T̄
2 + ...+ αk(T̄ k)

= α0 + α1T + α2T 2 + ...+ αkT k

= q(T )

q(T̄ ) = q(T )

for any q(x) ∈ F [x] with q(T ) = 0 ⇒ q(T̄ ) = q(T ) = 0. ∴ T satisfies
q(x) ∈ F [x].
Part III: Suppose p1(x) is minimal polynomial for T̄ (i.e.) p1(x) = 0. Also
given that p(x) is minimal polynomial for T . (i.e.) p(T ) = 0. We have to
show that p1(x)/p(x). Now p(T̄ ) = p(T ) = 0̄ ⇒ p(T̄ ) = 0̄ = 0. p(x) satisfies
T̄ . By Remark 4.54, p1/p(x) (here p(x) and h(x) = p(x) = p1(x)).

Definition 4.93 Triangular matrix A matrix M is called triangular if
the entries above the main diagonal are zero (or) equivalently T is a lin-
ear transformation on V over F matrix of T in the basis v1, v2, ..., vn are
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triangular if

v1T = α11v1

v2T = α21v1 + α22v2

v3T = α31v1 + α32v2 + α33v3

.

.

.

viT = αi1v1 + αi2v2 + αiivi

.

.

.

vnT = αn1v1 + αn2v2 + αnnvn.

(i.e.) if viT is a linear combination only if vi and its predecessor in the
basis.

Theorem 4.94 If T ∈ A(V ) has all its characteristic root in F , Then there
is a basis of V in which the matrix of T is triangular.
Proof: We prove this theorem by induction on the dimension of V over F .
If dimF (V ) = 1. Then every matrix representation of T ∈ A(V ) is a scalar.
(i.e.) A matrix of order 1×1 which is trivially a triangular matrix. Suppose
the theorem is true for all vector spaces over F of dimension (n− 1). Let V
be a vector spaces of dimension n over F . Since the Linear Transformation
T on V has all its characteristic root in F . Let λ1 ∈ F be a characteristic
root of T . Then there exists a non-zero vector v1 ∈ V such that v1T = λ1v1.
Let W = {αv1|α ∈ F} then W is a subspace of V of dimension 1. Then,

WT = {(αv1)T |α ∈ F, v1 ∈ V }

= {α(v1T )|α ∈ F, v1 ∈ V }

= {αw1|w1 ∈ V, α ∈ F}

⇒ WT ⊂ W. ∴W is a subspace of V of dimension 1 and invariant under T .
Let V̄ = V/W then dim(V̄ ) = dim(V/W ) = dim(V ) − dim(W ) = (n − 1).
By Lemma 4.92, T induces the linear transformation T̄ on V̄ . Also minimal
polynomial of T̄ over F divides minimal polynomial of T over F . ∴ All the
roots of minimal polynomial of T̄ being the roots of minimal polynomial of
T must be in F . Thus V̄ and T̄ satisfies the hypotheses of the theorem.
Since dim(V̄ ) = n−1, then by induction hypotheses there is a basis consists
of the vector v̄2, v̄3, ..., v̄n over V̄ over F in which the matrix of T̄ is triangular
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v̄2T̄ = α22v̄2

v̄3T̄ = α32v̄2 + α33v̄3

v̄4T̄ = α42v̄2 + α43v̄3 + α44v̄4

.

.

.

v̄nT̄ = αn2v̄2 + αn3v̄3 + ...+ αnnv̄n

Let v2, v3, ..., vn be the elements of V mapping into v̄2, v̄3, ..., v̄n of V̄ respec-
tively. (i.e.) v̄2 = v2 +W ; v̄3 = v3 +W ; ...; v̄n = vn +W . Then v1, v2, ..., vn

form a basis of V . Since v̄2T̄ = α22(v2 +W ) = α22v2 +W

(v2 +W ) + T̄ = α22v2 +W

v2T +W = α22v2 +W

⇒ v2T − α22v2 ∈ W

⇒ v2T − α22v2 is a multiples of v1, say α21v1

⇒ v2T − α22v2 = α21v1

v2T = α21v1 + α22v2

Similarly v3T = α31v1 + α32v2 + α33v3

.

.

.

viT = αi1v1 + αi2v2 + αiiv3 (i = 1, 2, ..., n)

(i.e.) the basis v1, v2, ..., vn of V over F provides us with a basis where every
viT is a linear combination of vi and its predecessors hence the matrix of T
in the basis {v1, v2, ..., vn} is triangular.

Theorem 4.95 If V is a dimensional over F and T ∈ A(V ) has matrix
m1(T ) in the basis v1, v2, ..., vn and m2(T ) = Cm1(T )C−1. In fact if S is
the linear transformation of V defined by viS = wi for i = 1, 2, ..., n then C
can be chosen to be m1(S).

Remark 4.96 The above theorem can be restated as if there is a matrix
A ∈ Fn has all its characters root in F then there is matrix C ∈ Fn such
that CAC1 is a triangular matrix.
Proof: Let A ∈ Fn has all its characteristic roots in F . A defines a linear
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transformation T on Fn whose matrix in the basis is precisely A.

v1 = (1, 0, ....0)

v2 = (0, 1, ....0)

.

.

.

vn = (0, 0, ....1)

The characteristic root of T , being those of A are all in F . Hence by Theorem
4.94 there is a basis of Fn in which the matrix of T is triangular. However
by Theorem 4.95 This changes of basis merely changes the matrix basis into
CAC−1 for a suitable C ∈ Fn

Remark 4.97 characteristic root of triangular matrix is diagonal matrix.

Theorem 4.98 If V is n dimensional over F and if T ∈ A(V ) has all its
characteristic roots in F , then T satisfies a polynomial of degree n over F .
Proof: Since V is n-dimensional over F and T ∈ A(V ) has all its root in F.
∴ By Theorem 4.94, we can find a basis v1, v2, ..., vn such that

v1T = λ1v1

v2T = α21v1 + λ2v2

v3T = α31v1 + α32v2 + λ3v3

.

.

.

viT = αi1v1 + αi2v2 + ...+ λii−1vi−1 + λivi for i = 1, 2, 3, ..., n.

Equivalently,

v1T − λ1v1 = 0

(i.e.) v1(T − λ1) = 0

v2T − α21v1 + λ2v2 = 0

(i.e.) v2(T − λ2) = α21v1

v3(T − λ3) = α31v1 + α32v2

.

.

.

vi(T − λi) = αi1v1 + αi2v2 + ......+ αii−1vi−1 for i = 1, 2, ..., n · · · (1)
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Now, v2(T−λ2)(T−λ1) = (v2(T−λ2))(T−λ1) = α21v1(T−λ1) = α21(v1(T−
λ1)) = α21(0) = 0......... (2)

But (T − λ2)(T − λ1) = (T − λ1)(T − λ2)

v1(T − λ2)(T − λ1) = v1((T − λ1)(T − λ2)) = 0 (by (1))

Similarly v1((T − λ3)(T − λ2)(T − λ1)) = 0

Continuing this type of computation fields,

v1((T − λi)(T − λi−1) · · · (T − λ2)(T − λ1)) = 0

v2((T − λi)(T − λi−1) · · · (T − λ2)(T − λ1)) = 0

.

.

.

vi((T − λi)(T − λi−1) · · · (T − λ2)(T − λ1)) = 0, i = 1, 2, ..., n

for i = n, let S = (T − λn)(T − λn−1) · · · (T − λ2)(T − λ1)

v1S = v1((T − λn)(T − λn−1) · · · (T − λ2)(T − λ1)) = 0

v2S = v2((T − λn)(T − λn−1) · · · (T − λ2)(T − λ1)) = 0

Similarly v3S = 0, ..., vnS = 0

v2S = v3S = ... = vnS = 0

The matrix S satisfies v1S = 0, v2S = 0, ..., vnS = 0. Since S anihilates a
basis of V , S must anihilates all of V. ∴ S = 0.

(T − λn)(T − λn−1) · · · (T − λ2)(T − λ1) = 0......(3)

Let p(x) = (x− λn)(x− λn−1) · · · (x− λ2)(x− λ1)

p(T ) = (T − λn)(T − λn−1) · · · (T − λ2)(T − λ1) = 0 by(3)

Hence T satisfies the polynomial of degree n over F .

Canonical Form:
The relation on A(V ) defined by similarly is an equivalence relation. The

equivalence class of the element of A(V ) will be called its similarity class.
Given two linear transformation, by scanning the similarity class of one we
could determine whether or not they are similar. But this procedure is not
feasible one. Instead we try to establish some kind of land mark in each
similarity class, and the way of going from any element in the class to this
landmark. We shall prove the existence of linear transformation in each
similarity class whose matrix in some basis of a particular nice form. These
matrices will be called canonical forms. For example, triangular form is a
canonical form.
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Trace and Transpose

Definition 4.99 The trace of a matrix A is the sum of the elements on the
main diagonal of A we shall write trace of A as trA (i.e.) if A = (αij) i, j =
1, 2, ..., n. Then

trA =
n∑

i=1

αii

Lemma 4.100 For A,B ∈ Fn and λ ∈ F ,

1. Trace of λA = λ(trA).

2. tr(A+B) = trA+ trB.

3. tr(AB) = tr(BA).

Proof: (1) Let

A = (αij) i, j = 1, 2, ...n

λA = (λαij) i, j = 1, 2, ...n

trλA =
n∑

i=1

λαij

= λ
n∑

i=1

αij

= λ(trA)

(2) Let (αij) ∈ Fn, B = (βij) ∈ Fn

Then A + B = (αij) + (βij) = (γij), i, j = 1, 2, ..., n where (γij) = αij +
βij , i, j = 1, 2, ..., n.

tr(A+B) = tr(γij)

=
n∑

i=1

γii

=
n∑

i=1

(αij + βii)

=
n∑

i=1

αii +
n∑

i=1

βii

= trA+ trB
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(3) Let A = (αij) ∈ Fn, B = (βij) ∈ Fn. Then, AB = (γij), where

γij =
n∑

i=1

αikβkj

tr(AB) = tr(γij)

=
n∑

i=1

γii

=
n∑

i=1

(
n∑

k=1

αikβki)......(i)

Let BA = (λij), where λij =
n∑

k=1

αikβkj

tr(BA) = tr(λij)

=
n∑

i=1

λii

=
n∑

i=1

(
n∑

k=1

βikαki)

from (i) tr(AB) =
n∑

i=1

(
n∑

k=1

αikβki)

=
n∑

k=1

(
n∑

i=1

βkiαik)

=
n∑

k=1

(λkk)

=
n∑

i=1

(λii)

= tr(BA)

Definition 4.101 Let T ∈ A(V ) then the trace of T is the trace of the
matrix M1(T ) where M1(T ) is the matrix of T in some basis of V

Remark 4.102 The above definition is meaningful and depends only on T
and not on any particular basis of V .

Corollary 4.103 If A is invertible then tr(ACA−1) = trC.
Proof: Let B = CA−1. Then, tr(A(CA−1)) = tr(A(B)) = tr(BA) =
tr(CA−1A) = tr(C(AA−1)) = tr(C).

Lemma 4.104 If T ∈ A(V ) then tr(T ) is the sum of the characteristic root
of T .
Proof: Let p(x) be the minimal polynomial and K be the splitting field
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of p(x). In Kn, T can be brought to Jordon from say J , where J =
ATA−1; trJ = tr(ATA−1) = tr(AT )A−1 = trA−1(AT ) = trA−1AT =
trT ...... (1)
Since all the characteristic roots of T appears on the main diagonal of J
(Jacobian). trJ=Sum of the characteristic root of T . tr(T )=Sum of the
characteristic root of T . (by (1))

Corollary 4.105 tr(BAB−1) = trA.

Remark 4.106 If T is nilpotent trT i = 0 ∀i ≥ 1.
Proof: Given T is nilpotent ⇒ there exist k > 0 such that tk = 0. Let λ be
the characteristic root of T then there exist v 6= 0 in V such that vT = λv.
Now, vT 2 = (vT )T = (λv)T = λ(V T ) = λ(λv) = λ2v. Similarly vT k = λkv
⇒ 0 = λkv (∵ T k = 0) ⇒ λk = 0 ⇒ λ = 0 (multiply by λ1−k). Hence all
the characteristic roots of T are 0 (since λ is only characteristic root). But
trT = Sum of the characteristic root of T = 0. Since T is nilpotent, T i, for
i ≥ 1 is nilpotent ⇒ trT i = 0 ∀i ≥ 1.

Remark 4.107 Converse of trT i = 0,∀i ≥ 1 then T is nilpotent. The
converse need not be true. In general T need not be nilpotent.

Example 4.108 Let

T =

(
1 0
0 1

)

be a matrix over the field F of characteristic 2 ⇒ 2a = 0 ∀a ∈ F ...... (1)
trT= Sum of diagonal element= 1+1=2(1)=0[∵ char F=2]. T i = T ∀i ≥
1; trT i = trT = 0 ∀i ≥ 1. But T is not nilpotent, since T k = T 6= 0 ∀i.

Lemma 4.109 If F is a field of characteristic 0 and if T ∈ A(V ) is there
exist trT i = 0 ∀i ≥ 1, then T is nilpotent.
Proof: Let p(x) = xm + α1x

m−1 + ...+ αm−1T be the minimal polynomial
of T . Then,

p(T ) = 0

⇒ Tm + α1T
m−1 + α2T

m−2 + ...+ αmT
0 = 0

⇒ tr(Tm + α1T
m−1 + α2T

m−2 + ...+ αmT
0) = tr(0)

⇒ tr(αmI) = 0 [for i ≥ 1, T i = 0]

⇒ αm(trI) = 0

⇒ nαm = 0 (where n = dim(V ) and trI = n)

⇒ αm = 0(∵ F is char 0)

(i.e.) Independent term of minimal polynomial p(x) is zero. ∴ T is singu-
lar,by Theorem 4.65. Then there exists v 6= 0 in V such that vT = 0 (by
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Theorem 4.65)⇒ vT = 0 · v. (i.e.) 0 is a characteristic root of T . Let K
be an extension of F which contains all the characteristic root of T . Now in
Kn, T can be brought to the triangular form (since 0 is the characteristic
root if T ). We have,

T =




0 0 · · · 0
β2 α2 · · · 0
·
·
·
βn · · · · αn




=

(
0 0
∗ T 2

)

where

T 2 =




α2 0 · · · 0
∗ α3 · · · 0
·
·
·
∗ ∗ · · · αn



is n− 1 × n− 1 matrix

TK
2 =

(
0 0
∗ T k

2

)

⇒ 0 = trT k = trT k
2 ⇒ trT k

2 = 0 ∀k ≥ 1. By using induction on dimension
(or repeating the argument on T2. We see that all the characteristic roots
are zero)
α2 = α3 = ...... = αn = 0 ⇒ T is brought to the triangular form and all its
diagonal elements are zero.

T =




0 · · · · 0
∗ · · · · 0
·
·
·
∗ · · · · 0




∴ Tn = 0. Hence T is nilpotent.

Lemma 4.110 If F is of characteristic 0 and if S, T ∈ A(V ) are such that
ST − TS commutes with S then ST − TS is nilpotent.
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Proof: Given F is of characteristic 0 Let k ≥ 1 then,

(ST − TS)k = (ST − TS)k−1(ST − TS)

= (ST − TS)k−1(ST ) − (ST − TS)k−1(TS)

= S((ST − TS)k−1T ) − ((ST − TS)k−1T )S

= SB −BS where B = (ST − TS)k−1T

⇒ tr((ST − TS)k) = tr(SB −BS)

= tr(SB) − tr(BS)

= tr(BS −BS)

= 0

∴ tr((ST − TS)k) = 0 k ≥ 0. ∴ By Lemma 4.109 ST − TS is nilpotent.

Definition 4.111 Transpose: If A = (αij) ∈ Fn then the transpose of A,
written as A′, is the matrix A′ = (γij) where γij = αji ∀i and j.

Lemma 4.112 For all A,B ∈ Fn,

1. (A′)′ = A

2. (A+B)′ = A′ +B′

3. (AB)′ = B′A′

Proof: (1) Let A = (αij) ∈ Fn. Then A′ = (βij) where βij = αji

(A′)′ = (γij) where γij = βji ⇒ (A′)′ = (βji) = αij = A.
(2) Let A = (αij) ∈ Fn; B = (βij) ∈ Fn

(A+B) = (αij + βij) = (γij)

(A+B)′ = (δij) where δij = γji

= γji = (αji + βji)

= A′ +B′
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(3) Let A = (αij) ∈ Fn and B = (βij) ∈ Fn

A′ = (γij) where γij = αji

B′ = (δij) where δij = βji

AB = (λij) where λij =
n∑

k−1

αikβkj

(AB)′ = (µij) where µij = λji

B′A′ = (ξij) where ξij =
n∑

k−1

δikγkj

ξij =
n∑

k−1

βkiαjk

=
n∑

k−1

αjkβki

ξij = λji

= µij

B′A′ = (AB)′

Definition 4.113 (i) A is said to be symmetric matrix if A′ = A
For example, 


d o g
o n e
g e t




(ii) A said to be skew symmetric matrix if A′ = −A
For example, (

0 1
−1 0

)

Definition 4.114 Adjoint Operator: Let F be a field of complex number.
Let A = (αij) ∈ Fn. Then A∗ = (γij where γij = αji the complex conjugate
of αji so here ∗ is usually called the hermitian adjoint on Fn, denoted by
A∗ defined as A∗ = (γij) where γij = αji. Let A = (αij) ∈ F the hermitian
adjoint of A on Fn is defined as A∗ = γij where γij = αji.

Remark 4.115 Any matrix can be uniquely written as the sum of the sym-
metric an skew symmetric matrices for A = 1

2(A+A′) + 1
2(A−A′).

Definition 4.116 Adjoint mapping: A mapping ∗ from Fn into Fn is
called an adjoint if

1. (A∗)∗ = A
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2. (A+B)∗ = A∗ +B∗

3. (AB)∗ = B∗A∗ for all A,B ∈ Fn

Definition 4.117 Suppose F be a field of complex numbers and that adjoint
∗ on Fn is the hermitian adjoint. The matrix A is called hermitian if A∗ =
A.

Definition 4.118 A is called skew hermitian if A∗ = −A

Remark 4.119 .

1. Any square matrix A can be uniquely written as a sum of a hermitian
and a skew hermitian matrices
A = 1

2(A+A∗) + 1
2(A−A∗).

2. If A 6= 0 ∈ Fn then trace of AA∗ > 0.

3. If A1, A2, ..., Ak ∈ Fn and if A1A
∗

1 + A2A
∗

2 + ... + AkA
∗

k = 0 then
A1 = A2 = ... = Ak.

4. If λ is a scalar matrix then λ∗ = λ̄.

Example 4.120

λ =

(
3i 0
0 3i

)
;λ∗ =

(
−3i 0

0 −3i

)
; λ̄ =

(
−3i 0

0 −3i

)
⇒ λ∗ = λ̄

Result 4.121 The characteristics roots of a hermitian matrix are all real
(i.e.) if a complex number λ is a characteristic roots of a hermitian matrix
then λ must be real.
Proof: Let A be a hermitian matrix then A = A∗ (i.e.) Ā′ = A and λ
be a characteristic root of T ∈ A(V ). Let X be a characteristics vector
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corresponding to λ then,

AX = λX

⇒ X̄ ′(AX) = X̄ ′(λX)

⇒ X̄ ′AX = λX̄ ′X

⇒ (X̄ ′AX)
′

= λX̄ ′X

⇒ X
′

A
′

X̄ = λX̄ ′X

⇒ (X ′A′X̄) = (λX̄ ′X)

⇒ X̄ ′Ā′ ¯̄X = λ̄X
′

X̄

⇒ X̄ ′Ā′X = λ̄X
′

X̄

⇒ X̄ ′AX = λ̄X
′

X̄ [∵ Ā′ = A∗ = A since hermitian]

⇒ X̄ ′λX = λ̄X
′

X̄

⇒ (λX̄ ′X) = λ̄(X
′

X̄)

= λ̄(X̄ ′X)

⇒ (λ− λ̄)(X̄ ′X) = 0

But X̄ ′X = x̄1x1 + x̄2x2 + ...+ x̄nxn =
n∑

i=1

|xi|
2 6= 0

⇒ (λ− λ̄) = 0 ⇒ λ = λ̄. ∴ λ is real.

Result 4.122 If A ∈ Fn then all the characteristic roots of AA∗ are non-
negative
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5. UNIT V

Extension Fields

Definition 5.1 Let F be a field; a field K is said to be an extension of F
if K ⊃ F . Equivalently, K is an extension of F if F is a subfield of K.

Remark 5.2 Throughout this chapter F will denote a given field and K an
extension of F .

Example 5.3 .

1. R is an extension of Q.

2. C is an extension of R.

3. Any field is an extension of itself.

Remark 5.4 .

1. Extension field K can be regarded as a vector space over F . But a
vector space over F cannot be considered as an extension.

2. If K is an extension of F , then under the ordinary field operation in
K,K is a vector space over F . As a vector space we may talk about
linear independence, dependence, dimensions, basis etc. in K relative
to F .

Definition 5.5 Let F be a given field and K be an extension of F . The
degree of K over F is the dimension of K as a vector space over F . (i.e.)
degree of K over F=dimension of K over F = dimF (K).

Note 5.6 [K : F ] will denote the degree of K over F .

Definition 5.7 When K is finite dimensional as a vector space over F we
say that [K : F ] is finite and we call K is finite extension of F .

Example 5.8 .

1. If F is an arbitrary field then clearly, F is a subfield of F . Every field
F can be regarded as an extension of itself moreover, F can be regarded
as a vector space over F . Here the set S = {1} consisting of only the
unity of F . S is linearly independent and L(S) = F. ∴ S forms a
basis of F over F . Then dimF (F )=1 (i.e.) [F : F ]=1. Here F is finite
extension of F .
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2. Since the field of complex numbers C contains the field of real num-
bers R, C is an extension of R. consider the set S = 1, i of complex
numbers. Claim: S is a bases of C over R. Let a, b ∈ R

Now,

a+ ib = a · 1 + bi = 0 = 0 + i0

⇒ a · 1 + b · i = 0 · 1 + 0 · i
⇒ a = 0, b = 0

⇒ S is Linearly independent........(1)

Let a+ ib be an arbitrary element in C. Now a+ ib = a · 1 + bi. (i.e.)
Any element in C can be uniquely written as a linear combination of
1 and i ⇒ L(S) = C........ (2)
From (1) and (2), S forms a basis of C over R

⇒ dimRC = 2 ⇒ [C : R] = 2. ∴ C is an finite extension of R.

3. Q(
√

2) = {a + b
√

2|a, b ∈ Q} is a field with respect to addition and
multiplication. Also Q set of all rational numbers is a field with re-
spect to addition and multiplication. Clearly Q is a subfield of Q

√
2.

(i.e.) Q(
√

2) is an extension of Q. Consider the set S = {1,
√

2}.
Claim: S is Linearly Independent

a+ b
√

2 = 0

⇒ a+ b
√

2 = 0 + 0
√

2

⇒ a = 0, b = 0 ⇒ S is Linearly Independent.......(1)

Claim: S spans Q(
√

2). Let a + b
√

2 be any element in Q(
√

2) and
a+ b

√
2 = a · 1 + b ·

√
2. ∴ L(S) = Q(

√
2)........(2)

From (1) and (2), S forms a basis of Q(
√

2) over Q. [Q(
√

2) : Q] = 2
(i.e.) dimQQ(

√
2) = 2. ∴ Q(

√
2) is a finite extension of Q.

4. Consider an indeterminate x over a field F . Let K be the field of Quo-
tients of F [x]. Then K is an extension of F . For any α0, α1......αn ∈ F
α0 · 1 +α1 ·x+ ...+αnx

n + ... = 0 = 0 + 0 ·x+ 0 ·x2 + ... ⇒ αi = 0 ∀i.
The set S = {1, x, x2, ..., xn, xn+1, ...}. It is an infinite subset of K
which forms a basis of K over F . Consequently, [K : F ] is infinite.

Theorem 5.9 If L is a finite extension of K and K is a finite extension of
F then L is a finite extension of F .
Proof: Let [L : K] = m and let [K : F ] = n. Since [L : K] = m, dimK(L) =
m
Let {v1, v2, ..., vm} be a basis of L over K. Similarly, let {w1, w2....wn} be a
basis of K over F . Let S = {viwj |i = 1, 2, ...,m, j = 1, 2, ..., n}. To Prove:
S forms a basis of L over F . First we must show that S generates L (i.e.)
To Prove: L(S) = L. (i.e.) to show that every element in L can be written
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as the linear combination of elements of S with the coefficients in F . Let
t ∈ L be any element. Since every element in L is a linear combination of
{v1, v2, ..., vm} with coefficient in K, in particular t = k1v1, k2v2, ..., kmvm,
where ki ∈ K...... (1)
Since [K : F ] = n and {w1, w2, ..., wn} forms a basis of K over F , any
element of K can be written as the linear combination of {w1, w2, ..., wn}
with the coefficients in F

k1 = f11w1 + f12w2 + ...+ f1nwn

k2 = f21w1 + f22w2 + ...+ f2nwn

·
·
·

km = fm1w1 + fm2w2 + ...+ fmnwn, fij ∈ F.......(∗)

Substitute these values of k1, k2, ..., kn in (1)

t = (f11w1 + f12w2 + ...+ f1nwn)v1 + (f21w1 + f22w2 + ...+ f2nwn)v2 + ...

+ (fm1w1 + fm2w2 + ...+ fmnwn)vm, where fij ∈ F, i = 1, 2, ...,m;

j = 1, 2, ..., n

t = f11w1v1 + f12w2v1 + ...+ f1nwnv1 + f21w1v2 + f22w2v2 + ...+ f2nwnv2

+ ...+ fm1w1vm + fm2w2vm + ...+ fmnwnvm

t = f11(w1v1) + f12(w2v1) + ...+ f1n(wnv1) + f21(w1v2) + f22(w2v2) + ...

+ f2n(wnv2) + ...+ fm1(w1vm) + fm2(w2vm) + ...+ fmn(wnvm)......(A)

(i.e.) t is a linear combination of {vjwj |i = 1, 2, ....m, j = 1, 2, ....n} over F
∴ L(S) = L......(2)
Next we have to show that the elements of the set
S = {vjwj/i = 1, 2, ...,m, j = 1, 2, ..., n} are linearly independent over F .
Suppose, f11(w1v1) + f12(w2v1) + ...f1n(wnv1) + f21(w1v2) + f22(w2v2) +
...f2n(wnv2) + ...+ fm1(w1vm) + fm2(w2vm) + ...+ fmn(wnvm) = 0..... (3)
Claim that fij = 0∀i = 1, 2, ....m, j = 1, 2, ....n. Regrouping the (3) we get,
(f11w1 + f12w2 + ... + f1nwn)v1 + (f21w1 + f22w2 + ... + f2nwn)v2 + ... +
(fm1w1 + fm2w2 + ...+ fmnwn)vm = 0...... (4)
(i.e.) k1v1 + k2v2 + ... + kmvm = 0, ki ∈ K. But, by our assumption
{v1, v2, ..., vm}form the basis of L over K so v1, v2, ..., vn are linearly inde-
pendent over K
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∴ k1 = k2 = ... = km = 0

k1 = 0 ⇒ f11w1 + f12w2 + ...+ f1nwn = 0

k2 = 0 ⇒ f21w1 + f22w2 + ...+ f2nwn = 0

·
·
·

km = 0 ⇒ fm1w1 + fm2w2 + ...+ fmnwn = 0......(5)

Since {w1, w2, ..., wn} forms the basis of K over F they are linearly indepen-
dent over F .
from (5) we have,

f11 = f12 = ... = f1n = 0

f21 = f22 = ... = f2n = 0

·
·
·

fm1 = fm2 = ... = fmn = 0

(i.e.) fij∀i = 1, 2, ...,m, j = 1, 2, ..., n. ∴ S = {viwj |i = 1, 2, ...,m, j =
1, 2, ..., n} is linearly independent...... (6)
From (2) and (3), the set S which contains mn elements forms the basis of
L over F. ∴ [L : F ] = dimF (L) = mn = [L : K][K : F ]....... (7)
Since [L : K] and [K : F ] are finite ⇒ [L : F ] is finite by (7). ∴ L is a finite
extension of F .

Corollary 5.10 If L is a finite extension of F and K is a subfield of L
which contains F , then [K : F ]/[L : F ].
Proof: Given L,K,F are fields, such that L ⊃ K ⊃ F and [L : F ] is finite.
Clearly any element in L, linearly independent over K, linearly independent
over F . From the assumption [L : F ] is finite we come to conclusion that
[K : F ] is finite. By previous theorem, [L : F ] = [L : K][K : F ]. Hence
[K : F ]/[L : F ].

Definition 5.11 An element a ∈ K is said to be algebraic over F if there
exists elements α0, α1, α2, ..., αn ∈ F , not all zero such that α0a

n +α1a
n−1 +

...+ αn = 0.

Remark 5.12 if p(x) = α0x
n + α1x

n−1 + ... + αn, αi ∈ F. ∴ α0a
n +

α1a
n−1 + ...+ αn = 0 ⇒ p(a) = 0. (i.e.) a ∈ K is algebraic over F if there

is a non-zero polynomial p(x) ∈ F [x] which satisfies a. (i.e.) p(a)=0.
For example, p(x) = x3 + 3x2 + 3x+ 1 ⇒ p(−1) = 0 ⇒ −1 is algebraic over
Q and 1 is not algebraic over Q.
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Adjunctions to a in F is F (a)
The field obtained by adjointing a to F . Let K be an extension of F and

a ∈ K. Let M be the collection of all subfields of K which contains both F
and a, M is not empty because K is a subfield of K and K contains both
F and a.

The intersection of all subfields of K which are members of M is also a
subfield of K. Let F (a) denote the intersection of those subfields of K which
are members of M then F (a) is a subfield of K. Obviously F (a) contains
both F and a because each members of M contains both F and a.

Thus F (a) is a member of M function if E is any subfield of K containing
then F (a) is a subset of E (since F (a) is the intersection of members of M
and E is the members of M)

Thus F (a) is a subfield of K containing both F and ′a′ and itself and it
is contained in any subfield of K containing both F and a. ∴ F (a) is the
smallest subfield of K containing both F and a.

We call F (a), the subfield of K obtained by adjoining ′a′ in F . Our
assumption of F (a), so for has been purely an external one, we now give an
alternative and more constructive description of F (a)

Suppose K is an extension field of F . Let a ∈ K and

U = { α0a
n + α1a

n−1 + ...+ αn

β0am + β1am−1 + ....+ βn
|αiβj ∈ F, β0a

m + β1a
m−1 + ...+ βn 6= 0},

where m and n non-negative integer. Clearly U is a subfield of K. It can
be easily seen that

(i) α, β ∈ U ⇒ α− β ∈ U

(ii) α ∈ U, 0 6= β ∈ U ⇒ α

β
∈ U.

Then U is a subfield of K. Claim: U = F (a). Clearly U contains both F
and a. ∴ U is a subfield of K containing both F and a. (i.e.) U contains
F (a)..... (1) [Since F (a) is the smallest subfield of K containing both F
and a]. Further any subfield of K which contains both F and a by virtue
of closure under addition and multiplication must contain all the elements
α0a

n + α1a
n−1 + ...+ αn = 0

Since F (a) is a subfield of K contain both F and a, F (a) must contain all
such elements being a subfield of K. ∴ F (a) must also contain U ....... (2)
From (1) and (2), F (a) = U .

Theorem 5.13 The element a ∈ K is algebraic over F iff F (a) is a finite
extension of F . [(i.e.) [F (a) : F ] is finite iff a ∈ K is algebraic over F ]
Proof: Suppose F (a) is a finite extension of F . Let [F (a) : F ] = m where m
is finite. To prove: a ∈ K is algebraic over F . Since F (a) is a field and a ∈
F (a), the (m+1) elements 1, a, a2, ..., am are all in F (a). Since the dim F (a)
as a vector space over F is m. [∵ [F (a) : F ] = m] ∴ These (m+ 1) elements
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of F (a) are linearly dependent over F. ∴ there exists α0, α1, α2, ..., αm ∈ F ,
not all zero such that α0 · 1 + α1a+ α2a

2 + ...+ αma
m = 0...... (1)

Letp(x) = α0 + α1x + ... + αmx
m ∈ F [x]. By (1) p(a)=0 (i.e.) a satis-

fies a non-zero polynomial in F [x]. Hence a is algebraic over F . Conversely,
suppose that a ∈ K is algebraic over F . Then a satisfies some non-zero poly-
nomial in F [x]. Let p(x) be a polynomial in F [x] of smallest positive degree
such that p(a)=0. Claim: p(x) is irreducible over F . Suppose not, p(x) is
reducible over F . p(x) = f(x)g(x), f(x), g(x) ∈ F [x], where deg(f(x)) 6= 0
and deg(g(x)) 6= 0. Now, 0 = p(a) = f(a)g(a) ⇒ g(a)f(a) = 0 ⇒ f(a) = 0
(or) g(a) = 0 [∵ f(a), g(a) ∈ F and F is a field F is an integral domain and
has no zero divisor]. Since p(x) is the smallest positive degree polynomial
such that p(a)=0. We have either deg(f(x)) ≥ deg(p(x)) or deg(g(x)) ≥
deg(p(x)). Thus p(x) = f(x)g(x) where either deg(f(x)) ≥ deg(p(x)) or
deg(g(x)) ≥ deg(p(x)). Which is a contradiction to the minimality of degree
of p(x). This contradiction shows that p(x) is irreducible over F . Define
a mapping ψ : F [x] → F (a) by (h(x))ψ = h(a). To prove: ψ is a ho-
momorphism. Let h1(x) and h2(x) ∈ F [x]. Suppose (h1(x))ψ = h1a and
(h2(x))ψ = h2(a),

(h1(x) + h2(x))ψ = ((h1 + h2)x)ψ

= (h1 + h2)(a)

= h1(a) + h2(a)

= (h1(x))ψ + (h2(x))ψ.......(1)

(h1(x)h2(x))ψ = ((h1h2)x)ψ

= h1h2(a)

= h1(a)h2(a)

= (h1(x))ψ(h2(x))ψ.......(2)

From (1) and (2), ψ is a homomorphism from F [x] to F (a). Let V =
Kerψ = {h(x) ∈ F [x]|(h(x))ψ = 0} where 0 is identity element of F (a).
Claim: V = Kerψ is an ideal of F [x]. Let h(x), g(x) ∈ V , then (h(x))ψ = 0
and (g(x))ψ = 0 ⇒ h(a) = 0 and g(a) = 0. Let S(x) = h(x) − g(x).
∴ S(a) = h(a) − g(a) = 0 ⇒ S(x) ∈ V ⇒ h(x) − g(x) ∈ V ...... (3)
Let h(x) ∈ V and f(x) ∈ F [x], then h(a) = 0. Let t(x) = h(x)f(x); t(a) =
h(a)f(a) = 0 ⇒ t(x) ∈ V ⇒ h(x)f(x) ∈ V, h(x) ∈ V, f(x) ∈ F [x]. Similarly
f(x)h(x) ∈ V ...... (4)
From (3) and (4), V is an ideal of F [x]. Obviously V 6= F [x] also p(x) is an
element of lower degree in the ideal V of F [x]. Since p(x) is irreducible, V
is a maximal ideal in F (x). By a theorem, F (x)/V is a field. By the general
homomorphism F [x]/V is isomorphic to the image of F [x] we have shown
that the image of F [x] under ψ is a subfield of F (a). This image contain xψ
=0 and for every α ∈ F, αψ = α, thus the image of F [x] under ψ is a subfield
of F (a) which contains both F and a. More clearly F [x]/V is isomorphic
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to F (a). Let V = (p(x)) be the ideal generated by p(x). The dimension of
F [x]/V as a vector space over F is precisely equal to the degree of p(x).
In view of this isomorphism we obtained between F [x]/V and F (a) we get
that,

[F [x]/V : F ] = deg(p(x))

degF (F (x)/V ) = deg(p(x))

degF (F (a)) = deg(p(x))

[F (a) : F ] = deg(p(x))

Hence [F (a) : F ] is finite.

Remark 5.14 We have actually proved that more, namely that [F (a) : F ]
= degree of the minimal polynomial satisfied by a over F .

Example 5.15 Let F be a field and Let F [x] be a ring of polynomial in x
over F . Let g(x) of degree n be in F [x] and V = (g(x)) in F [x].Prove that
F [x]/V is n dimensional vector space over F .
Solution: We have V = {f(x)g(x)|f(x) ∈ F [x]}; F [x]/V = {V+f(x)|f(x) ∈
F [x]}. Let V + f1(x), f2(x) ∈ F [x]/V . Then we define (V + f1(x)) + (V +
f2(x)) = V + f1(x) + f2(x). Also, we define scalar multiplication in F [x]/V
over F . Let a ∈ F, V +f(x) ∈ F [x]/V . Then we define, a[V +fx] = V +afx.
Obviously F [x]/V is an abelian group with respect to addition defined
on it. The residue class V is the zero vector. Further let a, b ∈ F and
f1(x), f2(x) ∈ F [x]. Then,

(i) (a+ b)[V + f1(x)] = V + (a+ b)f1(x)

= V + af1(x) + bf1(x)

= [V + af1(x)] + [V + bf1(x)]

= a[V + f1(x)] + b[V + f1(x)]

(ii) a[{V + f1(x)} + {V + f2(x)}] = a[V + f1(x) + f2(x)]

= V + a(f1(x) + f2(x))

= V + af1(x) + af2(x)

= [V + af1(x)] + [V + af2(x)]

= a[V + f1(x)] + a[V + f2(x)]

(iii) a[b(V + f1(x))] = a[V + bf1(x)]

= V + (ab)f1(x)

= ab[V + f1(x)]

(iv) [V + f1(x)] = V + 1 · f1(x)

= V + f1(x)

Hence F [x]/V is a vector space over F . Now, if g(x) of degree n then to show
that F [x] is dimension n over F . We claim that V +1, V +x, V +x2, ..., V +xn
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constitute the basis of F [x]/V over F . First we shall show that these n
elements of F [x]/V are linearly independent over F . Now we have,

a0(V + 1) + a1(V + x) + ...+ an−1(V + xn−1) = V

V + a0 + a1x+ ...+ an−1x
n−1 = V

a0 + a1x+ ...+ an−1x
n−1 ∈ V

⇒ a0 + a1x+ ...+ an−1x
n−1 = f(x)g(x) for some f(x) ∈ F [x]

f(x) = 0 [∵ iff(x) 6= 0 then deg(f(x)g(x)) ≥ deg(g(x)) = n and so we
cannot have f(x) · g(x) = a0 + a1x+ ...+ an−1x

n−1]
a0 + a1x+ ...+ an−1x

n−1 = 0 ⇒ a0 = a1 = ... = an−1 = 0
V +1, V +x, V +x2, ..., V +xn−1 are linearly independent over F . Let V +f(x)
be any element in F [x]/V . Then f(x) ∈ F [x]. By division algorithm there
exists q(x), r(x) ∈ F [x] such that f(x) = q(x)g(x)+r(x) where either r(x)=0
or deg(r(x)) < deg(g(x)). Now,

V + f(x) = V + q(x)g(x) + r(x)

= [V + q(x)g(x)] + (V + r(x))

= V + (V + r(x))

= V + r(x) (∵ V is a zero vector)

= V + a0 + a1x+ ...+ an−1x
n−1

where a0, a1, ..., an−1 ∈ F [∵ r(x) = 0 or deg(r(x)) < n (i.e.) deg(g(x))]
V + f(x) = a0(V + 1) + a1(V +x) + ...+ an−1(V +xn−1). Hence V + 1, V +
x, ..., V + xn−1 forms a basis of F [x]/V over F. dimF (F [x]/V ) = n (i.e.)
[F [x]/V : F ] = n.

Definition 5.16 A polynomial p(x) over F of lowest positive degree satis-
fied by a ∈ K is called a minimal polynomial for a over F .

Remark 5.17 .

1. We may assume that its coefficient of the highest power of x is 1, (i.e.)
it is monic; in that case a monic polynomial of smallest degree over F
satisfied by a is called the minimal polynomial of a over F .

2. a ∈ K is said to be algebraic of degree n over F if it satisfies a minimal
polynomial of degree n over F .

Example 5.18 .

1. Consider the polynomial x2 − 3; x2 − 3 = 0 ⇒ x = ±
√

3. ∴ x2 − 3 is a
minimal polynomial of

√
3 over Q. Clearly, it is monic and it satisfied

by
√

3 as
√

3 is irrational it cannot satisfy the polynomial of degree 1
over Q.
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2. x3 − 2 is a minimal polynomial of cubic root 2 over Q.

Result 5.19 If p(x) is a minimal polynomial of a over F of degree n then
[F (a) : F ] = n
Proof: Suppose p(x) is a minimal polynomial for a over F of degree n. Let
p(x) = xn + α1x

n−1 + ...+ αn, αi ∈ F. ∴ By our assumption,
p(a) = an + α1a

n−1 + ...+ αn = 0 ⇒ an = (−α1)an−1 + ...+ (−αn) · 1
(i.e.) an is a linear combinations of 1, a, a2, ..., an−1 and ∴ an ∈ L(S) where
S = {1, a, a2, ..., an−1}....... (3)
an+1 = (−α1)an + (−α2)an−1 + ...+ (−αn−1)a2 − αna...... (2)
Sub (1) in (2) we get
an+1 = −[α1(−(α1a

n−1 + α2a
n−2 + ...+ αn)) + α2a

n−1 + ...+ αna]
= −[(α2 − α2

1)an−1 + (α3 − α1α2)an−2 + ...+ a(αn − α1αn−1) − α1αn]
Showing that an+1 is a linear combination of 1, a, ..., an−1 over F . Contin-
uing in this way we find that for each k ≥ 0, an+k ∈ L(S) (i.e.) a linear
combination of 1, a, ..., an−1.
Claim: L(S) = F (a). F (a) is the subfield of K generated by a over F .
Then F (a) being a field containing the field F . In order to show that
F (a) is a finite extension of F . We must show that F (a) is a vector space
over the field F is finite dimensional. Since F (a) is the field containing
a, 1, a, a2, ..., an−1 are the elements of F (a). Let L(S) denote the set of
all linear combination of S. Then F (a) being a vector space over F , each
linear combination of elements of F (a) over F will be contained in F (a).
Consequently L(S) ⊂ F (a). Since L(S) contains both F and a. It is clear
that L(S) = F (a). Since for each k ≥ 0, an+k ∈ L(S). It follows that the
product of 2 elements of L(S) is a linear combination of 1, a, a2, ..., an−1 and
is therefore contained in L(S). So L(S) is closed for multiplication. Hence
L(S) is a subring of F (a). Since 1 + 0 · a + 0 · a2 + ... + 0 · an−1. (i.e.) as
a linear combination of 1, a, a2, ..., an−1. ∴ 1 ∈ L(S). (i.e.) L(S) contains
the unit element. Also the product of two non-zero elements of L(S) is 0.
Hence L(S) is a ring with unit element and is without zero divisor. Let
T = F (a). Consider T = {β0 + β1a + ...... + βn−1a

n−1/βi ∈ F}. Clearly T
is closed under addition and multiplication, T is a ring which contains both
F and a. Claim: T is a field. Let 0 6= u = β0 + β1a + ... + βn−1a

n−1. Let
h(x) = β0 +β1a+ ...+βn−1a

n−1 ∈ F [x]. Since u 6= 0 and u = h(a) we have,
h(a) 6= 0.(i.e.) a does not satisfy a polynomial h(x) and p(x) is the minimal
polynomial satisfied by a ⇒ p(x) does not divide h(x) (i.e.) p(x) and h(x)
are relatively prime polynomial in F [x]. Hence we can find polynomial S(x)
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and t(x) in F [x]

⇒ p(x)S(x) + h(x)t(x) = 1

But then 1 = p(a)S(a) + h(a)t(a)

= h(a)t(a) [∵ p(a) = 0]

= ut(a) [∵ h(a) = u]

u−1 = t(a)

Since t(a) is the value of polynomials t(x) at x = a follows that t(a) is a linear
combination of 1, a, a2, ..., an−1. Also since an+k is a linear combination of
1, a, a2, ..., an−1 for each k > 0. It follows that t(x) is a linear combination
of 1, a, a2, ..., an−1; t(a) ∈ L(S) (i.e.) t(a) ∈ T (i.e.) Every non-zero element
of T has its inverse in T. ∴ T is a field. However T is a subset of F (a), yet
F and a are both contained in T which gives T = F (a). We have identified
F (a) as the set of all expression β0 + β1a + ... + βn−1a

n−1. Hence L(S)
is a field containing F and a and itself contained in F (a). Consequently
F (a) = L(S). Also the set S is linearly independent. Suppose if S is
a linearly dependent. There exists elements α0, α1, ..., αn−1 not all zero
such that α0 · 1 + α1a + ... + αn−1a

n−1 = 0 ⇒ a satisfy a polynomial,
α0 + α1x + ... + αn−1x

n−1 of deg n − 1 which is a contradiction to the
minimality of p(x). This contradiction shows that S is linearly independent.
∴ S = {1, a, a2, ..., an−1} is the basis of the vector space F (a) over the field
F . (i.e.) [F (a) : F ] = n.

Theorem 5.20 If a ∈ K is algebraic of degree n over F then [F (a) : F ] =
n.
Proof: Let K be a finite extension of the given field F . Suppose a ∈ K is
algebraic over F of degree n. ∴ There exists a minimal polynomial p(x) of
degree n over F satisfies a. ∴ By the above result, [F (a) : F ] = n.

Theorem 5.21 If a, b in K are algebraic over F then a ± b, ab and a
b (b 6=

0) are all algebraic over F . In otherwords, the elements in K which are
algebraic over F form a subfield of K.
Proof: Let E be the set of all elements of K which are algebraic over
F. E = {a ∈ K|a is algebraic over F}. Since each element α ∈ F satisfies
the monic polynomial (x − α) over F , It follows that α ∈ F is algebraic
over F. ∴ E is not empty and is a subset of K. Suppose a is algebraic
of degree m over F. ∴ a ∈ E and [F (a) : F ] = m [by Theorem 5.20].
Let T = F (a) the T is a subfield of K of degree m over F . Suppose b is
algebraic of degree n over F then it is algebraic of degree almost n over T
which contains F . (i.e.) T (b) is a subfield of K and is of degree atmost
n over T . Let W = T (b) then [W : T ] ≤ n (i.e.) [T (b) : T ] ≤ n (i.e.)
[F (a, b) : T ] ≤ n ⇒ [F (a, b) : F (a)] ≤ n. By Theorem 5.9, [W : F ] =
[W : T ][T : F ] (i.e.)[W : T ] = [F (a, b) : F ] = [F (a, b) : F (a)][f(a) : F ] =
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mn ⇒ [F (a, b) : F ] = [W : F ] = mn. Hence F (a, b) is a finite extension is
an algebraic extension it follows that F (a, b) is an algebraic extension of F .
But F (a, b), being a field a, b ∈ F (a, b) ⇒ a± b, ab, a

b (b 6= 0) ∈ F (a, b) (Since
each element of F (a, b)is algebraic over F ) ⇒ a± b, ab, a

b (b 6= 0) ∈ E. Hence
E is a subfield of K. (i.e.) the elements in K which are algebraic over F
form a subfield of K.

Corollary 5.22 If a and b in K are algebraic over F of degree m and n
respectively then a± b, ab, a

b (b 6= 0) are algebraic of degree atmost mn.
Proof: Since a ∈ K is algebraic over F of degree m, [F (a) : F ] = m. Since
b ∈ K is algebraic over F of degree n, [F (b) : F ] = n. Then the minimax
polynomial over F of degree n satisfies b. But F (a), being a subfield of
F , the minimal polynomial over F (a) satisfies b is of degree atmost n. Let
T = F (a) and W = T (b) ∴ [W : T ] ≤ n; [F (a, b) : F (a)] ≤ n. By Theorem
5.9, [F (a, b) : F ] = [F (a, b) : F (a)][F (a) : F ] ≤ mn ∴ F (a, b) is finite
under algebraic extension of F of degree not exceeding mn. Consequently
each element of F (a, b) is algebraic of degree not exceeding mn. Moreover
F (a, b), being a field, a±b, ab, a

b (if b 6= 0) ∈ F (a, b). Hence a±b, ab, a
b (b 6= 0)

are algebraic of degree at most mn over F .

Definition 5.23 The extension K of F is called an algebraic extension of
F if every element in K is algebraic over F .

Theorem 5.24 If L is an algebraic extension of K and if K is an algebraic
extension of F , then L is an algebraic extension of F .
Proof: Let u be an arbitrary element of L. To Prove: L is an algebraic
extension of F , it is enough to prove that u is algebraic over F . (i.e.) To
Prove: It satisfies some non trivial polynomial whose coefficients are in F .
Since u ∈ L and L is an algebraic extension of K,u satisfies a non trivial
polynomial xn + σ1x

n−1 + σ2x
n−2 + ... + σn, where σ1, σ2, ..., σn ∈ K. But

K is an algebraic extension of F ∴ σ1, σ2, ..., σn are algebraic over F . By
several uses of Theorem 5.20, M = F (σ1, σ2, ..., σn) is a finite extension
of F . Since u satisfy the polynomial xn + σ1x

n−1 + ... + σn, where co-
efficient σ1, σ2, ..., σn are in M = F (σ1, σ2, ..., σn). ∴ u is algebraic over
M using theorem 5.13, M(u) is finite extension of M . By Theorem 5.9,
[M(u) : F ] = [M(u) : M ][M : F ]. M(u) is a finite extension of F and u is
an algebraic over F .

Definition 5.25 A complex number is said to be algebraic number if it is
an algebraic over the field of rational number.

Example 5.26 Let a = 2 + 3i then (a− 2)2 = (3i)2 ⇒ a2 + 4 − 4a = −9 ⇒
a2 − 4a + 13 = 0. Now, p(x) = x2 − 4x + 13. ∴ a = 2 + 3i satisfies
a polynomial over the field of rational numbers. ∴ 2 + 3i is an algebraic
number.
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Example 5.27 (a) Let R be a field of real numbers and Q field of rational
numbers in R,

√
2 and

√
3 are both algebraic both algebraic over Q exhibit a

polynomial of degree 4 over Q satisfied by
√

2 +
√

3.
(b) What is degree of

√
2 +

√
3 over Q.

(c) What is the degree of
√

3
√

2 over Q.
solution: (a) Given

√
2 ∈ R algebraic over Q and the element

√
2 ∈ R

satisfy the polynomial, x2 − 2 = 0 over Q and x2 − 2 is an irreducible. The
degree of algebraic of

√
2 over Q = deg(x2 − 2).

√
2 is algebraic of degree 2

over Q. [Q
√

2 : Q] = 2. Similarly
√

3 is algebraic over Q.
√

3 ∈ R satisfies a
polynomial x2 − 3 over Q.

√
3 ∈ R is an algebraic of degree 2 over Q.

[Q
√

3 : Q] = 2

Let x =
√

3 +
√

2

⇒ x−
√

3 =
√

2

⇒ (x−
√

3)2 = 2

⇒ x2 − 2
√

3x+ 3 = 2

⇒ x2 + 1 = 2
√

3x

⇒ (x2 + 1)2 = 4 · 3x2

⇒ x4 + 1 + 2x2 = 12x2

⇒ x4 − 10x2 + 1 = 0

Let p(x) = x4 − 10x2 + 1
which is the required fourth degree polynomial satisfies

√
3 +

√
2 over Q.

(b)
√

2 +
√

3 ∈ Q(
√

2,
√

3):
We shall now prove the converse. Since Q(

√
2 +

√
3) is field,

(
√

2 +
√

3)3 = 11
√

2 + 9
√

3 ∈ Q(
√

2 +
√

3)

Also − 9(
√

2 +
√

3) ∈ Q(
√

2 +
√

3)

1/2[(11
√

2 + 9
√

3) − 9(
√

2 +
√

3)] =
√

2 ∈ Q(
√

2 +
√

3)
√

2 +
√

3 −
√

2 =
√

3 ∈ Q(
√

2 +
√

3)

Thus
√

2,
√

3 ∈ Q(
√

2 +
√

3)

Q(
√

2,
√

3) ∈ Q(
√

2 +
√

3)

Hence Q(
√

2,
√

3) = Q(
√

2 +
√

3).

Let L = Q
√

2 then [L : Q] = 2. Also x2 − 3 is an irreducible polynomial
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over L satisfied by
√

3,

[L
√

3 : L] = 2

Now [L
√

3 : Q] = [L
√

3 : L][L : Q]

= 2 · 2 = 4

Let L(
√

3) = (Q
√

2)
√

3 = Q(
√

2,
√

3)

= Q(
√

2 +
√

3)

[Q(
√

2 +
√

3) : Q] = 4

⇒
√

2 +
√

3 is of degree 4 over Q.
(c) Let a denote the field of rational numbers. Let K = Q

√
2; L = K

√
3.

Now, [L : K]=2 and [K : Q]=2. To find [L : Q],

[L : Q] = [L : K][K : Q]

L = K
√

3

= (Q
√

2)(
√

3)

= Q(
√

2
√

3)

[L : Q] = [Q(
√

2
√

3) : Q]

= [L : K][K : Q] = 2 · 2 = 4.

Example 5.28 With the same notation as in above problem. Show that√
2 + 3

√
5 is algebraic over Q of degree 6.

Solution: Let
√

2 + 3
√

5. To prove: [Q(a) : Q]=6. Given
√

2 ∈ R algebraic
over Q and the element

√
2 ∈ R satisfies the polynomial x2−2 = 0 over Q and

x2−2 is an irreducible. The degree of algebraic of
√

2 over Q = deg(x2−2) =
2. (i.e.)

√
2 is algebraic of degree 2 over Q. (i.e.) [Q

√
2 : Q]=2. Similarly

3
√

5 algebraic over Q. 3
√

5 ∈ R satisfies a polynomial x = 3
√

5 ⇒ x = 51/3 ⇒
x3 = 5 ⇒ x3 − 5 = 0} over Q and x3 − 5 is an irreducible. The degree of
algebraic of 3

√
n over Q = deg(x3 − 5) = 3.

[Q
3
√

5 : Q] = 3

Let x =
√

2 +
3
√

5

⇒ x−
√

2 =
3
√

5

(x−
√

2)3 = 5

⇒ (x−
√

2)(x2 − 2x
√

2 + 2) = 2

⇒ x3 − 2
√

2x2 −
√

2x2 + 2x+ 4x− 2
√

2 = 5

⇒ x3 − 3
√

2x2 + 6x− 2
√

2 = 5
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⇒ x3 + 6x = [5 +
√

2(2 + 3x2)]

(x3 + 6x− 5)2 = [
√

2(2 + 3x2)]2

⇒ x6 + 36x2 + 25 + 12x4 − 60x− 10x3 = 2(4 + 9x4 + 12x2)

⇒ x6 + 6x4 − 10x3 + 12x2 − 60x− 8 + 25 = 0

⇒ x6 + 6x4 − 10x3 + 12x2 − 60x+ 17 = 0

Now, p(x) = x6 + 6x4 − 10x3 + 12x2 − 60x+ 17 = 0 ∈ Q[x], which satisfies
(
√

2 + 3
√

5). [Q(
√

2 + 3
√

5) : Q] = degree of p(x) = 6. (
√

2 + 3
√

5) is algebraic
over Q of degree 6.

Roots of Polynomials:

Definition 5.29 If p(x) ∈ F [x] then an element a lying in some extension
field F is called a root of p(x) if p(a) = 0.

Lemma 5.30 Remainder theorem: If p(x) ∈ F [x] and if K is an ex-
tension of F then for any element b ∈ K, p(x) = (x − b)q(x) + p(b) where
q(x) ∈ F [x] and deg(q(x)) = deg(p(x)) − 1.
Proof: Since F ⊂ K,F [x] ⊂ K[x]; p(x) ∈ F [x] ⇒ p(x) ∈ K[x]. Since
the polynomial p(x) and (x − b) are both in K[x], we can apply division
algorithm for this polynomial. ∴ there exists polynomials q(x) and r(x) in
K[x] such that p(x) = (x− b)q(x) + r(x), q(x) ∈ K[x], where either r(x) = 0
or deg(r(x)) < deg(x − b). (i.e.) in either case r(x) must be a constant
in K[x]. Let r(x) = r ∈ K (i.e.) r must be an element in K. Since
p(x) = (x− b)q(x) + r, let p(b) = r ⇒ p(x) = (x− b)q(x) + p(b).....(1)
Suppose deg(p(x)) = n and deg(q(x)) = m. From (1) deg(p(x)) = deg(p(x)) =
deg(x − b)q(x) + deg(p(b)) ⇒ n = 1 + m + 0 ⇒ m = n − 1 ⇒ deg(q(x)) =
deg(p(x)) − 1.

Corollary 5.31 Factor Theorem: If a ∈ K is a root of p(x) ∈ F [x] where
F ⊂ K then in K[x], (x− a)/p(x).
Proof: Let p(x) ∈ F [x] and a ∈ K where K is an extension of K. Then by
Remainder theorem in K[x], we have p(x) = (x−a)q(x)+p(a) ⇒ p(x) = (x−
a)q(x)+0 (∵ a is a root of p(x)) ⇒ p(x) = (x−a)q(x) ⇒ (x−a)/p(x) ∈ K[x].

Definition 5.32 The element a ∈ K is a root of p(x) ∈ F [x] of multiplicity
m if (x− a)m/p(x) where (x− a)m+1/p(x).

Lemma 5.33 A polynomial of degree n over a field can have at most n
roots in any extension field.
Proof: We prove this theorem by induction on n, the degree of the poly-
nomial p(x). Let p(x) be a polynomial of degree 1 over any F . Let p(x) =
αx+ β, α, β ∈ F and α 6= 0. Let a be a root of p(x) in some extension of F .
Then p(a) = αa + β ⇒ 0 = αa + β ⇒ a = −β/α(α 6= 0). In this case p(x)
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has the unique root −(β/α) (i.e.) p(x) has one and exactly one roots in any
in any extension field of F . The theorem is true when p(x) is of degree 1.
Assuming that the result is true in any field for all polynomial of degree less
than n. Let us suppose that p(x) be a polynomial of degree n over F . Let
K be any extension of F . If p(x) has no roots in K ,then the theorem is
obviously true, because the number of roots in K is zero which is definitely
at most n. So, let us suppose that p(x) has at least one root, say a ∈ K.
Let a be the root of multiplicity m then in K[x],
(x− a)m/p(x),m ≤ n....... (1)
⇒ deg((x− a)m) ≤ deg(p(x)) ⇒ m ≤ n. Since (x− a)m, is a divisor of p(x)
in K[x]. We have p(x) = (x − a)mq(x) where q(x) ∈ K[x] ⇒ deg(p(x)) =
deg((x−a)m)+deg(q(x)); deg(q(x)) = deg(p(x))−deg((x−a)m) = (n−m) ≤
n (1 ≤ m ≤ n). Now, a is a root of p(x) of multiplicity m. we have,
(x− a)m+1 does not divides p(x) = (x− a)m+1q(x)...... (2)
⇒ (x − a)m+1 does not divides (x − a)m+1q(x) ⇒ (x − a) does not divides
q(x) [if (x − a)/q(x) then (x − a)m+1/p(x) ⇒⇐ to2]. ∴ a is not a root of
q(x). If b 6= a is a root of p(x) in K then, 0 = p(b) = (b− a)mq(b). Since K
is a field and 0 6= (b−a)m ∈ K and q(b) ∈ K, we have q(b) = 0 ⇒ b is a root
of q(x) in K. ∴ Any root of p(x) in K other than a must also be a root of
q(x) in K. Since deg(q(x)) = n−m < n, by our induction hypothesis, q(x)
has atmost n−m roots in K other than a. ∴ p(x) has atmost (n−m) +m
roots in K. (i.e.) p(x) has atmost n roots in K. ∴ The root a if p(x) of
p(x) of multiplicity m being counted m times. ∴ By induction hypothesis
the lemma follows.

Theorem 5.34 If p(x) is a polynomial in F [x] of degree n ≥ 1 and is
irreducible over F , then there is an extension E of F such that [E : F ] = n
in which p(x) has a root.
Proof: Let F [x] be the ring of polynomial in x over F . Let V = (p(x))
be the ideal generated by p(x) ∈ F [x]. Then V is a maximal ideal of F [x].
Hence by Theorem 3.38. ∴ F [x]/V = E(say) is a field. We shall show that
the field E satisfies all the requirements of the theorem. First we shall show
that E can be regarded as an extension of F . Even though E does not
contain the the elements of F in their original form, for this, we shall show
that the field F can be embedded in the field E. Let F̄ be the image of F
in E. Let ψ : F → E defined by αψ = V + α, α ∈ F .
(i) ψ is 1-1:
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Let α, β ∈ F such that αψ = βψ,

V + α = V + β

(α− β) ∈ V = p(x)

(α− β) = f(x)p(x) for some f(x) ∈ F [x]

⇒ f(x) = 0

⇒ (α− β) = 0

⇒ α = β

ψ is 1 − 1.

(ii) ψ is homomorphism:

(α+ β)ψ = V + (α+ β)

= (V + α) + (V + β)

= αψ + βψ

∴ ψ is a homomorphism.
Thus ψ is an isomorphism from F into E. Let F̄ be the image of F into E
under ψ. Let F̄ = {α + V |α ∈ F}. Thus ψ is an isomorphism of F onto F̄
and F̄ is a subfield of E isomorphic to F by the mapping ψ : F [x] → E, by
f(x)ψ = f(x) + V and the restriction of ψ to F induces an isomorphism of
F onto F̄ . If we identify F and F̄ under this isomorphism we can consider
E to be an extension of F .
Claim: E is a finite extension of F of degree n equal to degree of p(x). First
we shall prove that the n elements {1+V, x+V, (x+V )2 = x2+V, (x+V )3 =
x3 + V, ..., (x+ V )n−1 = xn−1 + V } form a basis of E over F . [E : F ] = n.
Finally we shall show that p(x) has a root in E. Let p(x) = β0 + β1x +
β2x

2 + ... + βkx
k where β0, β1, β2, ..., βk ∈ F . First Let us make p(x) be a

polynomial over E with help of the identification we have made between F
and F̄ . For convenience of notation Let us denote the element xψ = x+ V
in the field E as aβk by βk +V, p(x) = (β0 +V )+(β1 +V )x+ ...+(βk +V )xk.
We shall show that x+ V ∈ E satisfies p(x).

p(x+ V ) = (β0 + V ) + (β1 + V )(x+ V ) + ...+ (βk + V )(x+ V )k

= (β0 + V ) + (β1 + V )(x+ V ) + (β2 + V )(x2 + V ) + ...

+ (βk + V )(xk + V )

= (β0 + β1x+ β2x
2 + ...+ βkx

k) + V

= p(x) + V

= v (∵ p(x) ∈ V )

= zero element of E.

Thus (x+V ) satisfies p(x). ∴ An element x+V in the extension E satisfies
the polynomial p(x) ∈ F [x]. The field E has been shown to satisfy all the
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properties required in the conclusion of the theorem.

Corollary 5.35 If f(x) ∈ F [x] the there is a finite extension E of F in
which f(x) has a root. Moreover [E : F ] ≤ deg(f(x)).
Proof: Let p(x) be an irreducible factor of f(x). Let f(x) = p(x)q(x). ∴

deg(p(x)) ≤ deg(f(x)). Let a be a root of p(x) in some extension field
K of F . Then p(a) = 0 ⇒ f(a) = p(a)q(a) = 0 ⇒ f(a) = 0. Thus
any root of p(x) in some extension field of F is also a root of p(x) in that
extension field. Since p(x) is irreducible over F , by the above theorem,
[E : F ] = deg(p(x)) ≤ deg(f(x)) ⇒ [E : F ] ≤ deg(f(x)).

Theorem 5.36 let f(x) ∈ F [x] be a polynomial of degree n greater than or
equal to q then there is an extension of E of F of degree atmost n! in which
f(x) has n roots.
Proof: We shall prove this theorem by induction on n the degree of f(x).
Let f(x) ∈ F [x] of degree 1. Let f(x) = a0x + a0, a ∈ F, a0 6= 0. Now
F itself is an extension of F. ∴ [F : F ] = 1 (i.e.) [F : F ] ≤ 1!. Now,
f(x) = a0x+ a0 = 0 ⇒ x = −a/a0 ∈ F, a0 6= 0 is a root of f(x) = a0x+ a.
Thus if degree of f(x)=1. There is a finite extension F of degree atmost
1=1!. ∴ The result is true for n=1. Now assume by our induction hypothesis
that the theorem is true in any field for all polynomials of degree less than
n. Let f(x) be a polynomial of degree n over a field F . By Corollary 5.35,
there is an extension E0 of F with [E0 : F ] ≤ deg(f(x)) in which f(x) has
a root, α(say). ∴ By remainder theorem, in E0[x], f(x) can be factored as
f(x) = (x− α)q(x) + (α) where deg of q(x) = deg(f(x)) − 1 = (n− 1) < n
(i.e.)deg(q(x)) < n ∴ By induction hypothesis there is an extension E of
degree atmost (n− 1)! (i.e.) [E : E0] = (n− 1)! in which q(x) has n-1 roots.
Since any root of f(x) is either α or a root of q(x). ∴ In E we obtain all n
roots of f(x). Since E is an extension of E0 and E0 is an extension of F , we
have, E is an extension F ∴ [E : F ] ≤ [E : E0][E0 : E] = (n− 1)!n = n! ⇒
[E : F ] ≤ n!. Thus E is an extension of F of degree atmost n! in which f(x)
has n roots.

Remark 5.37 The above theorem asserts that the finite extension E of a
given field F in which the given polynomial of degree n over F has n roots.
Let f(x) = a0x

n + a1x
n−1 + ... + an, a0 6= 0 ∈ F [x]. Let α1, α2, ..., αn be n

roots of f(x) in E. ∴ By Corollary 5.31, f(x) can be factored over E as
f(x) = a0(x−α1)(x−α2 · · · (x−αn). Thus f(x) splits of completely over E
as a product of linear factors such a finite extension of F of minimal degree
in which f(x) splits of completely over E as a product of linear factor exists
for such minimal extension improper subfield has the property.

Definition 5.38 If f(x) ∈ F [x], a finite extension E of F is said to be
a splitting field over F for f(x) if over E[F (x)] but not over any proper
subfield of E. f(x) can be factored as a product of linear factors.
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Remark 5.39 The above theorem guarantees the existence of splitting field.

Equivalent definition of splitting field for f(x) over F :
E is a splitting field of f(x) over F if E is a minimal extension of F in
which f(x) has n roots where n = deg(f(x)).

Remark 5.40 A minimal extension E of a field F is said to be splitting
field of f(x) ∈ F [x] if f(x) ∈ F [x] is expressible as f(x) = a0(x − α1)(x −
α2) · · · (x − αn) where f(x) = a0x

n + a1x
n−1 + ... + an, αi ∈ F and E =

F (α1, α2, ..., αn), α0, ..., αn ∈ E.

Note 5.41 Let E1 and E0 be two splitting fields of the same polynomial
f(x) in F [x]. We shall show that they are isomorphic by an isomorphism
leaving every element of F fixed.

An isomorphic mapping:
Let F and F ′ be two fields and let E and E′ be the extension fields of F
and F ′ respectively. An isomorphism σ : E → E′ is called a continuation
of an isomorphism ψ : F → F ′, (α)σ = (α)ψ ∀ατ = α ∈ E. Let τ be an
isomorphism of F onto F ′ for convenience let us denote the image of any
α ∈ F under τ by α′ (i.e.) ατ = α′.

Remark 5.42 In the fallowing result we can make use of τ to set up an
isomorphism between F [x] and F ′[t].

Lemma 5.43 Let ψ be an isomorphism of a field F onto a field F ′ such
that (α)τ = α′. Show that there is an isomorphism τ∗ of F [x] onto F ′[t]
with a property that (α)τ∗ = α′ ∀α ∈ F [x].
Proof: Given τ is a isomorphism of F onto F ′. For any α ∈ F we
write (α)τ = α′. Let us define τ∗ = F [x] → F ′[t] as follows, let f(x) =
α0x

n + α1x
n−1 + ...+ αn. Define

(f(x))τ∗ = (α0x
n + α1x

n−1 + ...+ αn)τ∗

= (α0τ)tn + (α1τ)tn−1 + ...+ (αnτ)

= α′
0t

n + α′
1x

n−1 + ...+ α′
n

= f ′(t)(say)

we shall show that τ∗ is 1-1. Let f(x) = α0x
n + α1x

n−1 + ... + αn and
g(x) = β0x

m + β1x
m−1 + ...+ βm be any two elements in F [x]. Suppose
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(f(x))τ∗ = g(x)τ∗

⇒ (α0x
n + α1x

n−1 + ...+ αn)τ∗ = (β0x
m + β1x

m−1 + ...+ βm)τ∗

⇒ α′
0t

n + α′
1x

n−1 + ...+ α′
n = β′

0t
m + β′

1x
m−1 + .....+ β′

m

⇒ n = m and α′
i = β′

i, i = 0, 1, ....n

⇒ n = m and (αi)τ = (βi)τ, i = 0, 1, 2....n

⇒ n = m and αi = βi, i = 0, 1, 2....n (∵ τ is 1-1)

f(x) = g(x)

τ∗ is onto: Let γ′
0t

n + γ′
1x

n−1 + ... + γ′
n be any element of F ′[t], γ′

i ∈
F ′ since τ is onto, there exists γ0, γ1, ..., γn ∈ F such that (γ0)τ = γ′

0,
(γ1)τ = γ′

1, ..., (γn)τ = γ′
n. Now γ0x

n, γ1x
n−1, ..., γn ∈ F [x] and

(γ0x
n, γ1x

n−1, ..., γn)τ∗ = (γ′
0t

n + γ′
1x

n−1 + ...+ γ′
n). ∴ τ∗ is onto.

τ∗ is a homomorphism: To Prove: (f(x) + g(x))τ∗ = f(x)τ∗ + g(x)τ∗

[f(x)+g(x)]τ∗

= [α0x
n + α1x

n−1 + ...+ αn + β0x
m + β1x

m−1 + ...+ βm]

= ((α′
0x

n + α′
1x

n−1 + ...+ α′
n) + (β′

0x
m + β′

1x
m−1 + ...+ β′

m))

= (α0x
n + α1x

n−1 + ...+ αn)τ∗ + (β0x
m + β1x

m−1 + ...+ βm)τ∗

= f(x)τ∗ + g(x)τ∗

Hence τ∗ is an isomorphism of F [x] onto F ′[t].

Remark 5.44 .

1. Further if f(x) ∈ F [x] be simply taken as α where α ∈ F then
(f(x))τ∗ = ατ∗ = ατ = α′.

2. From the above theorem we conclude that factorisation of f(x) in F [x]
result in like factorisation of f(x)τ∗ = f ′(t) in F ′[t] and vice versa.
In particular f(x) is irreducible in F [x] iff f ′(t) is irreducible in F ′[t].

Lemma 5.45 Let τ be an isomorphism of a field F onto a field F ′ defined
by (α)τ = α′ ∀α ∈ F for an arbitrary polynomial f(x) = (α0x

n + α1x
n−1 +

...+αn) ∈ F [x]. Let us define f ′(t) = α′
0t

n+α′
1x

n−1+...+α′
n ∈ F ′[t]. If f(x)

is irreducible in F [x], show that there is an isomorphism τ∗∗ of F [x]/f(x)
onto F ′[t]/f ′[t] with the property that ατ∗∗ = α′(x+ f(x))τ∗∗ = t+ f ′(t).
Proof: Let τ∗ : F [x] → F ′[t] defined by f(x)τ∗ = f ′(t). Then by Lemma
5.43 τ∗ is an isomorphism of F [x] onto F ′[t]. Let f(x) be irreducible in F [x]
then f ′(t) will be irreducible in F ′[t]. V = (f(x)) ideal generated by f(x)
in F [x] and V ′ = (f ′(t)) ideal in F ′[t]. Now, f(x) and f ′(t) are irreducible
both V and v′ are maximal ideal. F [x]/V and F ′[t]/V are fields. Define
τ∗∗ : F [x]/V → F ′[t]/V ′ by (g(x) + V )τ∗∗ = g(x)τ∗ + V ′ = g′(t) + V ′.
τ∗∗ is well defined: For this we have to show that if V + g(x) = V + h(x)
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then [V + g(x)]τ∗∗ = [V + h(x)]τ∗∗, g(x), h(x) ∈ F [x]. We have V + g(x) =
V +h(x) ⇒ g(x)−h(x) ∈ V ⇒ [g(x)−h(x)] = [k(x)f(x)] where k(x) ∈ F [x]

[g(x) − h(x)]τ∗ = [k(x)f(x)]τ∗

⇒ g(x)τ∗ − h(x)τ∗ = (k(x))τ∗ · (f(x))τ∗

⇒ g′(t) − h′(t) = k′(t)f ′(t)

⇒ g′(t) − h′(t) ∈ V ′

⇒ V ′ + g′(t) = V ′ + h′(t)

⇒ [V + g(x)]τ∗∗ = [V + h(x)]τ∗∗

∴ τ∗∗ is well defined.
τ∗∗ is 1-1: Let g(x), h(x) ∈ F [x].

[V + g(x)]τ∗∗ = [V + h(x)]τ∗∗

V ′ + g′(t) = V ′ + h′(t)

g′(t) − h′(t) ∈ V ′

g′(t) − h′(t) = k′(t)f ′(t) for some k′(t) ∈ F ′[t]

⇒ g(x)τ∗ − h(x)τ∗ = (k(x))τ∗(f(x))τ∗

(g(x) − h(x))τ∗ = (k(x) · f(x))τ∗

⇒ g(x) − h(x) = k(x)f(x)

⇒ g(x) − h(x) ∈ V

⇒ V + g(x) = V + h(x)

⇒ τ∗∗ is 1 − 1.
τ∗∗ is onto:
Since the mapping τ∗ is onto. ∴ corresponding to any polynomial g′(t) ∈
F ′[t]
we have a polynomial g(x) in F [x], V ′ + g′(t) ∈ F ′[t]/V ′ ⇒ V + g(x) ∈
F [x]/V such that [V + g(x)]τ∗∗ = V ′ + g′(t) ⇒ τ∗∗ preserves addition and
multiplication. Let g(x), h(x) ∈ F [x], we have

[(V + g(x)) + (V + h(x))]τ∗∗ = (V + g(x) + h(x))τ∗∗

= V ′ + (g(x) + h(x))τ∗∗

= V ′ + (g(x))τ∗ + (h(x))τ∗

= V ′ + (g′(t) + h′(t))

= (V ′ + g′(t)) + (V + h′(t))

= (V + g(x))τ∗∗ + (V + h(x))τ∗∗

Also, [(V + g(x)) + (V + h(x))]τ∗∗ = [V + g(x)h(x)]τ∗∗

= V ′ + (g(x))τ∗ · (h(x))τ∗

= V ′ + g′(t) · h′(t)

= [V ′ + g′(t)] · [V + h′(t)]

= [V + g(x)]τ∗∗[V + h(x)]τ∗∗
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Thus τ∗ is an isomorphism of F [x]/V onto F ′[t]/V ′. In Theorem 5.34
we have shown that F can be imbedded in field F [x]/V by identifying the
element α ∈ F with the residue class (coset) V +α in F [x]/V . Similarly we
can consider F ′ to be obtained in F ′[t]/V ′ with this identification for any
α ∈ F we have ατ∗∗ = (V +α)τ∗∗ = V ′ + (α)τ∗ = V ′ +α′ = α′ (α′ has been
identified with V + α).

Example 5.46 Let F be any field and let p(x) = x2 + αx + β.α, β be in
F [x]. Let K be any extension of F .
By Lemma 5.33, p(x) has a root in K[x]. ∴ p(a) = 0.

0 = p(a) = a2 + αa+ β

β = −a(a+ α)

Let b = −α− a ∈ K

∴ α = −(a+ b)......(1)

p(b) = b2 + αb+ β

= (α+ a)2 − α(a+ α) − a(a+ α)

= α2 + a2 + 2αa− αa− α2 − a2 − aα

= 0

∴ b is root in K
Case(i): Suppose b = a. Then, p(x) = x2+αx+β = x2−x(a+b)−a2−aα =
x2 − x(a + b) + ab. Since b = a, p(x) = x2 − 2ax + a2 = (x − a)2 =
(x− a)(x− a). ∴ both the roots of p(x) are in K.
Case (ii): Suppose b 6= 0. Then,

p(x) = x2 + (−a− b)x+ a(a+ b) − a2

= x2 + (−a− b)x+ a(a+ b− a)

= x2 + (−a− b)x+ ab

= (x− a)(x− b)

∴ a and b are the roots of p(x) consequently p(x) can be splitted by an
extension of degree 2 over F .

Remark 5.47 We could also get this result directly by invoking Theorem
5.36.

Example 5.48 Let F be the field of rational numbers and f(x) = x3 − 2.
In the field of complex number. Determine the degree of the splitting field of
this polynomial f(x) over F .
Solution: Given F is a field of rational number. Let f(x) = x3 −2 ∈ F [x] =
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Q[x]. In the field of complex number we can find 3 roots of f(x) as follows.

f(x) = 0

x3 − 2 = 0

x3 = 2 · 1

x3 = 2[cos0 + isin0]

x3 = 2(cos2kπ + isin2kπ)

x = 2
1

3 (cos2kπ + isin2kπ)
1

3

x = 2
1

3 (cos(
2kπ

3
) + isin(

2kπ

3
))

Put k=0,1,2..., then the roots are

k = 0 ⇒ x1 = 2
1

3 (cos0 + isin0) = 2
1

3

k = 1 ⇒ x2 = 2
1

3 (cos(
2π

3
) + isin(

2π

3
))

= 2
1

3 [−1 +

√
3i

2
]

= 2
1

3ω

k = 2 ⇒ x3 = 2
1

3 (cos(
4π

3
) + isin(

4π

3
))

= 2
1

3 (cos(240◦) + isin(240◦))

= 2
1

3 (cos(270◦ − 30◦) + isin(240◦ − 30◦))

= 2
1

3 (−sin(30◦) + i(−cos30◦))

= 2
1

3 (−1

2
−

√
3i

2
)

= 2
1

3 (−1 −
√

3i

2
)

= 2
1

3ω2

∴ The roots are 2
1

3 , 2
1

3ω, 2
1

3ω2, where ω = −1 +
√

3i
2 and ω2 = −1 −

√
3i
2

and 2
1

3 is a real cubic root of 2. The polynomial f(x) is irreducible over

Q by Eisentien criterion. Since 2
1

3 is root of f(x), 2
1

3 is algebraic over F of
degree 3. ∴ [F (21/3) : F ]=3 by Theorem 5.20. Let F be the splitting field
of f(x) over F the field F of 21/3 cannot splits f(x) because as a subfield of

real field it cannot contain the complex number but not real number w · 2
1

3 .
∴ f(2

1

3 ) will be a proper subfield of E so we have [E : F ] > [F (2
1

3 ) : F ]=3.

Also by Theorem 5.36, [E : F ] ≤ 3!=6 ⇒ [E : F ] = [E : F (2
1

3 )][F (2
1

3 ) : F ]

(by Theorem 5.9) ⇒ [F (2
1

3 ) : F ]/[E : F ] ⇒ 3/6. ∴ We must have [E : F ] =
6. ∴ E is the splitting field of f(x) over F of degree 6.
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Example 5.49 Let F be the field of rational numbers and let f(x) = x4 +

x2 + 1 ∈ F [x] prove that E = F (w), w = −1 +
√

3i
2 is a splitting field of f(x)

over F and prove that [E : F ]=2.

More about roots

Definition 5.50 If f(x) = α0x
n +α1x

n−1 + ...+αix
n−i + ...+αn−1x+αn

in F [x], then the derivative of f(x), written as f ′(x), is the polynomial
f ′(x) = nα0x

n−1 +(n−1)α1x
n−2 + ...+(n− i)αix

n−i+1 + ...+αn−1 in F [x].

Definition 5.51 A field F is said to be characteristic zero if ma 6= 0 for
a 6= 0 in F and m > 0 an integer. If ma = 0 for some m > 0 and
some a 6= 0 ∈ F then F is said to be of finite characteristic. If there
exists a smallest positive integer p such that pa = 0 for all a ∈ F then the
characteristic of F is p.

Remark 5.52 .

1. If F is of finite characteristic then its characteristic, p is a prime
number.

2. If F be a field of characteristic p 6= 0, in this case the derivative of a
polynomial xp, pxp−1 = 0 thus the usual result from the calculus that a
polynomial whose derivative is zero must be a constant no longer need
hold true.

3. However if the characteristic of F is zero and if F ′(x) = 0 for f(x) ∈
F , it is indeed true that f(x)=constant (i.e.) f(x) = α ∈ F . Even
when the characteristic of F is p 6= 0 we can still describe the poly-
nomial with zero derivative. If f ′(x)=0 then f(x) is a polynomial in
xp.

Lemma 5.53 For any polynomials f(x), g(x) ∈ F [x] and only α ∈ F .

1. (f(x) + g(x))′ = f ′(x) + g′(x).

2. (α(f(x)))′ = αf ′(x).

3. (f(x) + g(x))′ = f ′(x)g(x) + f(x)g′(x).

Proof: (1) Let

f(x) = αn + αn−1x+ ...+ αn−(m−1)x
m−1 + ...+ αn−mx

m + αn−(m+1)x
m+1

+ ...+ α0x
n and

g(x) = βm + βm−1x+ βm−2x
2 + ...+ β2x

m−2 + β1x
m−1 + β0x

m
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Assume that n > m

f(x) + g(x)

= (αn + βm) + (αn−1 + βm−1)x+ ...+ (αn−m+1 + β1)xm−1

+ (αn−m + β0)xm + αn−m−1x
m+1 + ...+ α1x

n−1 + α0x
n

(f(x) + g(x))′

= (αn−1 + βm−1) + 2(αn−2 + βm−2)x+ ...+ (m− 1)(αn−m+1 + β1)xm−2

+m(αn−m + β0)xm−1 + (m+ 1)αn−m−1x
m + ...+ (n− 1)α1x

n−2

+ nα0x
n−1

= (αn−1 + 2αn−2x+ ...+ (m− 1)αn−(m−1)x
m−2 +mαn−mx

m−1

+ (m+ 1)αn−m−1x
m + ...+ (n− 1)α1x

n−2 + nα0x
n−1)

+ (βm−1 + 2βm−2x+ (m− 1)β1x
m−2 +mβ0x

m−1) where n = m

= f ′(x) + g′(x)

(2)

α(f(x)) = ααn + ααn−1x+ ...+ ααn−m+1x
m−1 + ααn−mx

m

+ ααn−m−1x
m+1 + ...+ αα0x

n

(α(f(x)))′ = ααn−1 + 2ααn−2x+ ...+ (m− 1)ααn−m+1x
m−2

+mααn−mx
m−1 + (m+ 1)ααn−m−1x

m + ...+ nαα0x
n−1

= α(αn−1 + 2αn−2x+ ...+ (m− 1)αn−(m−1)x
m−2 +mαn−mx

m−1

+ (m+ 1)αn−m−1x
m + ...+ nα0x

n−1)

= αf ′(x)

(3) To Prove this part it is enough to prove it in the highly special case,
f(x) = xi and g(x) = xj where i and j are positive. g(x)f(x) = xi+j . Then,

(f(x)g(x))′ = ixi−1xj = (i+ j)xi+j−1.....(1)

f ′(x)g(x) = ixi−1xj .....(2)

f(x)g′(x) = jxixj−1.....(3)

(2) + (3) ⇒ f(x)g′(x) + f ′(x)g(x) = (i+ j)xi+j−1 = (f(x)g(x)).

Remark 5.54 If f(x) and g(x) in F [x] have a non trivial common factor
in K[x], for K an extension of F then they have a non-trivial common
factor in F [x]. For where they relatively prime as elements in F [x], then
they would be able to find two polynomials a(x) and b(x) in F [x] such that
a(x)f(x) + b(x)g(x)=1. Since this relation holds for those elements viewed
as elements of K[x], in K[x] they would have to be relatively prime

Lemma 5.55 The polynomial f(x) ∈ F [x] has a multiple root iff f(x) and
f ′(x) have a non-trivial (i.e. of positive degree) common factors.



104 5. UNIT V

Proof: From the above remark, just may, we may assume without loss of
generality, the roots of f(x) are all lie in F (otherwise extend F to K, the
splitting field of F ). Suppose f(x) has a multiple root α of multiplicity m ≥
2. Then f(x) = (x− α)mq(x) and q(α) 6= 0, q(x) ∈ K[x].

∴ f ′(x) = m(x− α)m−1q(x) + (x− α)mq′(x)

= (x− α)((x− α)m−2mq(x) + (x− α)m−1q′(x))

= (x− α) · r(x) (∵ m > 1)

where r(x) = (x− α)m−2mq(x) + (x− α)m−1q′(x).

Also f ′(α)=0 (i.e.) α is a root of f ′(x). ∴ f(x) and f ′(x) have the common
factor x − α. Conversely, suppose that f(x) and f ′(x) have a non trivial
common factor. To Prove: f(x) has a multiple root. Suppose not, (i.e.)
f(x) has no multiple root. Then f(x) = (x−α1)(x−α2) · · · (x−αn) where
αi’s are all distinct (We assume that f(x) to be monic)

f ′(x) = ˜(x− α1)(x− α2) · · · (x− αn) + (x− α1) ˜(x− α2) · · · (x− αn)

+ (x− α1)(x− α2) · · · ˜(x− αn)

=
n∑

i=1

(x− α1)(x− α2) · · · ˜(x− αi) · · · (x− αn),

where ∼ denote the term is omitted. Claim: No root of f(x) is a root of
f ′(x) (i.e. f(x) and f ′(x) have no common factor)

f ′(αi)

= (α1 − α2)(α1 − α3) · · · (α1 − αn) + (α2 − α1)(α2 − α3) · · · (α2 − αn)+

(α3 − α1)(α3 − α2) · · · (α3 − αn) + (αn − α1)(αn − α2) · · · (αn − αn−1)

=
∏

j 6=i

(αi − αj) 6= 0 (∵ αi 6= αj for i 6= j)

This show that f ′(x) =0 holds if one of the roots α1, α2, ..., αn is a multiple
root of f(x). However if f(x) and f ′(x) have a non trivial common factor,
they have common root, namely, any root of this common that f(x) has a
multiple root.

Corollary 5.56 If f(x) ∈ F [x] is irreducible, then

1. if the characteristic of F is zero, f(x) has no multiple root,

2. if the characteristic of F is p 6= 0, f(x) has a multiple root only if it
is of the form f(x) = g(xp).

Proof: (1) Let f(x) = α0x
n + α1x

n−1 + ... + αn−1x + αn, α0 6= 0 be an
irreducible polynomial of degree n ≥ 1 over a field F of characteristic zero.
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Then f ′(x) = nα0x
n−1+(n−1)α1x

n−2+...+αn−1. Since F is of characteristic
zero and α0 6= 0, then nα0 6= 0. ∴ f ′(x) 6= 0, also deg(f ′(x)) < deg(f(x)).
To Prove: f(x) has no multiple root. Suppose if possible f(x) has a multiple
root (say α). Then by above lemma, f(x) and f ′(x) have a non-trivial
common factor and hence f(x)/f ′(x). But f ′(x) 6= 0 and f(x) and f ′(x)
both being irreducible with deg f ′(x) < degf(x). This shows that f(x) does
not divides f ′(x)
⇒⇐ to f(x)/f ′(x) (i.e.) if α is not a root f(x) then α is not a multiple root
of f(x) hence f(x) has no multiple root.
(2) In this case characteristic of F is p 6= 0. Suppose α is a multiple root
of f(x). Let f(x) = α0 + α1x + ... + αnx

n, αn 6= 0. Let f ′(x) = α1 +
2α2x+ ...+ nαnx

n−1. Now, since f(x) has a multiple root, f ′(x) = 0 (i.e.)
α1 + 2α2x+ ...+ nαnx

n−1 = 0 = 0 + 0x+ 0x2 + ...+ 0xn−1 ⇒ α1 = 2α2 =
3α3 = ... = nαn = 0 (i.e.) for any k, 1 ≤ k ≤ n, kαk = 0. Since F is of
characteristic p ≥ 0, p/k or αk = 0. Thus when f ′(x) = 0 we see that if for
any k.αk 6= 0 then p/k ⇒ k = k1p. That means f(x), if any term αkx

k has
αk 6= 0 then it is of the form αk1px

k1p = αk1p(xp)k1 so that f(x) is of the
form β0 + β1x

p + β2(xp)2 + ... + βn(xp)n for some positive integer n then
f(x) ∈ F [xp]. f(x) is of the form g(xp).

Corollary 5.57 If F is a field of characteristic p 6= 0 then the polynomial
xpn − x ∈ F [x] for n ≥ 1 has distinct roots.
Proof: Let f(x) = xpn − x. Then f ′(x) = pnxpn−1 − 1...... (1)
Now p ∈ F , we mean 1+1+...+1 (p times). Since F is of characteristic p,
the order of element of the additive group of F is p, p=1+1+...+1 (p times).
Hence pn = 0 ⇒ f(x) = −1. Now we see that f(x) and f ′(x) have non
trivial common factor. By Lemma 5.55, f(x) has no multiple roots. Hence
f(x) has distinct roots.

Definition 5.58 The extension K of a field F is called a simple extension
of F if K = F (α) for some α ∈ K.

Theorem 5.59 If F is of characteristic zero and if a, b are algebraic over
F then there exists an element c ∈ F (a, b) such that F (a, b) = F (c).
Proof: Given, F is of characteristic zero. Let f(x), g(x) be the irreducible
polynomial over F of a and b respectively and let m,n be their respective
degrees. Let K be an extension of F in which both f(x) and g(x) splits
completely (i.e.) K is the splitting field of f(x) and g(x) over F then
a, b ∈ K. Clearly, every root of f(x) is a root of f(x)g(x) and K contains
the splitting field of f(x). Since the characteristic of F is zero all roots of
f(x) and g(x) are distinct (by Corollary 5.56). Let f(x) has m distinct roots
say a = a1, a2, ..., am in K and g(x) has n distinct roots say b = b1, b2, ..., bn

in K. If j 6= 1 then bj 6= b1 = b (i.e.) b − bj 6= 0. We can solve the
equation ai + λbj = a1 + λb1 = a+ λb has only one solution λ in K namely,
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λ = ai−a
b−bj

∈ K. These λ’s are finite numbers. As F is of characteristic zero.

F has infinite number of elements. So we can find an element r ∈ F such
that ai + rbj = a+ rb ∀i and ∀j 6= (i.e.) i, j ≥ 2. Let c = a+

√
b ∈ F (a, b).

Claim: F (c) = F (a, b). Since a, b ∈ F (a, b), a +
√
b ∈ F (a, b) ⇒ c ∈

F (a, b) ⇒ F (c) = F (a, b)..... (1)
Let K = F (c). Since b is a root of g(x), (x − b) is a factor of g(x). Let
h(x) = f(c − rx). Then h(b) = 0 ⇒ b is a root of h(x) ⇒ (x − b) is
a factor of h(x). (i.e.) (x − b) is a common factor of h(x) and g(x). If
j 6= 1, h(bj) = f(c− rbj) 6= f(a) 6= 0 ⇒ f(c− rbj) 6= 0 (i.e.) (x− bj) is not
a factor of h(x). Also (x− b)2 does not divides g(x), (x− b)2 cannot divide
the gcd of h(x) and g(x). Thus, (x− b) is a gcd of h(x) and g(x) over F of
K. But then they have a non trivial gcd over K which must be divisor of
(x− b). Since deg(x− b) = 1 we see that the gcd of g(x) and h(x) in K[x]
is exactly x− b. Thus x− b ∈ K[x]. Hence b ∈ K = F (c) ⇒ b ∈ F (c). Since
b, c ∈ F (c) and r ∈ F (c) ⊃ F ⇒ c− rb ∈ F (c) ⇒ a = c− rb ∈ F (c) ⇒ a, b ∈
F (c) ⇒ F (a, b) ⊂ F (c)..... (2)
From (1) and (2), ⇒ F (a, b) = F (c).

Corollary 5.60 Any finite extension of a field of characteristic zero is a
simple extension.
Proof: Let α1, α2, ..., αn be algebraic over F of characteristic zero. Then
by repeated use of the preceding theorem we have,

F (α1, α2, ..., αn) = K

= F (α1, α2), (α3, α4, ..., αn)

= F (γ1), (α3, α4, ..., αn) ∵ F (α1, α2) = F (γ1)

= F (γ1, α3), (α4, ..., αn)

= F (γ2), (α4, α5, ..., αn)

·
·
·

= F (γn−2), αn

= F (γn−1)

F (α1, α2, ..., αn) is a simple extension of F .
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